9 research outputs found

    Comparison of Two Independent Lidar-Based Pitch Control Designs

    Full text link

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    Tracking Control for Non-Minimum Phase System and Brain Computer Interface

    Get PDF
    For generations, humans dreamed about the ability to communicate and interact with machines through thought alone or to create devices that can peer into a person’s mind and thoughts. Researchers have developed new technologies to create brain computer interfaces (BCIs), communication systems that do not depend on the brain’s normal output pathways of peripheral nerves and muscles. The objective of the first part of this thesis is to develop a new BCI based on electroencephalography (EEG) to move a computer cursor over a short training period in real time. The work motivations of this part are to increase: speed and accuracy, as in BCI settings, subject has a few seconds to make a selection with a relatively high accuracy. Recently, improvements have been developed to make EEG more accurate by increasing the spatial resolution. One such improvement is the application of the surface Laplacian to the EEG, the second spatial derivative. Tripolar concentric ring electrodes (TCREs) automatically perform the Laplacian on the surface potentials and provide better spatial selectivity and signal-to-noise ratio than conventional EEG that is recorded with conventional disc electrodes. Another important feature using TCRE is the capability to record the EEG and the TCRE EEG (tEEG) signals concurrently from the same location on the scalp for the same electrical activity coming from the brain. In this part we also demonstrate that tEEG signals can enable users to control a computer cursor rapidly in different directions with significantly higher accuracy during their first session of training for 1D and 2D cursor control. Output tracking control of non-minimum phase systems is a highly challenging problem encountered in many practical engineering applications. Classical inversion techniques provide exact output tracking but lead to internal instability, whereas modern inversion methods provide stable asymptotic tracking but produce large transient errors. Both methods provide an approximation of feedback control, which leads to non robust systems, very sensitive to noise, considerable tracking errors and a significant singularity problem. Aiming at the problem of system inversion to the true system, the objective of the second part of this thesis is to develop a new method based on true inversion for minimum phase system and approximate inversion for non-minimum phase systems. The proposed algorithm is automatic and has minimal computational complexities which make it suitable for real-time control. The process to develop the proposed algorithm is partitioned into (1) minimum phase feedforward inverse filter, and (2) non-minimum phase inversion. In a minimum phase inversion, we consider the design of a feedforward controller to invert the response of a feedback loop that has stable zero locations. The complete control system consists of a feedforward controller cascaded with a closed-loop system. The outputs of the resulting inverse filter are delayed versions of the corresponding reference input signals, and delays are given by the vector relative degree of the closed-loop

    Energy-Optimal Control of Over-Actuated Systems - with Application to a Hybrid Feed Drive

    Full text link
    Over-actuated (or input-redundant) systems are characterized by the use of more actuators than the degrees of freedom to be controlled. They are widely used in modern mechanical systems to satisfy various control requirements, such as precision, motion range, fault tolerance, and energy efficiency. This thesis is particularly motivated by an over-actuated hybrid feed drive (HFD) which combines two complementary actuators with the aim to reduce energy consumption without sacrificing positioning accuracy in precision manufacturing. This work addresses the control challenges in achieving energy optimality without sacrificing control performance in so-called weakly input-redundant systems, which characterize the HFD and most other over-actuated systems used in practice. Using calculus of variations, an optimal control ratio/subspace is derived to specify the optimal relationship among the redundant actuators irrespective of external disturbances, leading to a new technique termed optimal control subspace-based (OCS) control allocation. It is shown that the optimal control ratio/subspace is non-causal; accordingly, a causal approximation is proposed and employed in energy-efficient structured controller design for the HFD. Moreover, the concept of control proxy is proposed as an accurate causal measurement of the deviation from the optimal control ratio/subspace. The proxy enables control allocation for weakly redundant systems to be converted into regulation problems, which can be tackled using standard controller design methodologies. Compared to an existing allocation technique, proxy-based control allocation is shown to dynamically allocate control efforts optimally without sacrificing control performance. The relationship between the proposed OCS control allocation and the traditional linear quadratic control approach is discussed for weakly input redundant systems. The two approaches are shown to be equivalent given perfect knowledge of disturbances; however, the OCS control allocation approach is shown to be more desirable for practical applications like the HFD, where disturbances are typically unknown. The OCS control allocation approach is validated in simulations and machining experiments on the HFD; significant reductions in control energy without sacrificing positioning accuracy are achieved.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146104/1/molong_1.pd

    Time-Domain Analysis of Sensor-to-Sensor Transmissibility Operators with Application to Fault Detection.

    Full text link
    In some applications, multiple measurements are available, but the driving input that gives rise to those outputs may be unknown. This raises the question as to whether it is possible to model the response of a subset of sensors based on the response of the remaining sensors without knowledge of the driving input. To address this issue, we develop time-domain sensor-to-sensor models that account for nonzero initial conditions. The sensor-to-sensor model is in the form of a transmissibility operator, that is, a rational function of the differentiation operator. What is essential in defining the transmissibility operator is that it must be independent of both the initial condition and inputs of the underlying system, which is assumed to be time-invariant. The development is carried out for both single-input, single-output and multi-input, multi-output transmissibility operators. These time-domain sensor-to-sensor models can be used for diagnostics and output prediction. We show that transmissibility operators may be unstable, noncausal, and of unknown order. Therefore, to facilitate system identification, we consider a class of models that can approximate transmissibility operators with these properties. This class of models consists of noncausal finite impulse response models based on a truncated Laurent expansion. These models are shown to approximate the Laurent expansion inside the annulus between the asymptotically stable pole of largest modulus and the unstable pole of smallest modulus. By delaying the measured pseudo output relative to the measured pseudo input, the identified finite impulse response model is a noncausal approximation of the transmissibility operator. The causal (backward-shift) part of the Laurent expansion is asymptotically stable since all of its poles are zero, while the noncausal (forward-shift) part of the Laurent expansion captures the unstable and noncausal components of the transmissibility operator. This dissertation also develops a time-domain framework for both single-input, single-output and multi-input, multi-output transmissibilities that account for nonzero initial conditions for both force-driven and displacement-driven structures. We show that motion transmissibilities in force-driven and displacement-driven structures are equal when the locations of the forces and prescribed displacements are identical.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113623/1/khaledfj_1.pd

    Nonminimum Phase Dynamic Inversion for Settle Time Applications

    No full text
    corecore