2,373 research outputs found

    Nonlocality and entanglement in qubit systems

    Full text link
    Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, {\it Gisin's Theorem}), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R=1/Tr(ρ2)R=1/Tr(\rho^2) or their maximum eigenvalue λmax\lambda_{max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed.Comment: 16 pages, 3 figure

    Nonlocality threshold for entanglement under general dephasing evolutions: A case study

    Full text link
    Determining relationships between different types of quantum correlations in open composite quantum systems is important since it enables the exploitation of a type by knowing the amount of another type. We here review, by giving a formal demonstration, a closed formula of the Bell function, witnessing nonlocality, as a function of the concurrence, quantifying entanglement, valid for a system of two noninteracting qubits initially prepared in extended Werner-like states undergoing any local pure-dephasing evolution. This formula allows for finding nonlocality thresholds for the concurrence depending only on the purity of the initial state. We then utilize these thresholds in a paradigmatic system where the two qubits are locally affected by a quantum environment with an Ohmic class spectrum. We show that steady entanglement can be achieved and provide the lower bound of initial state purity such that this stationary entanglement is above the nonlocality threshold thus guaranteeing the maintenance of nonlocal correlations.Comment: 7 pages, 4 figures. Revised versio

    Paradoxes of measures of quantum entanglement and Bell's inequality violation in two-qubit systems

    Full text link
    We review some counterintuitive properties of standard measures describing quantum entanglement and violation of Bell's inequality (often referred to as "nonlocality") in two-qubit systems. By comparing the nonlocality, negativity, concurrence, and relative entropy of entanglement, we show: (i) ambiguity in ordering states with the entanglement measures, (ii) ambiguity of robustness of entanglement in lossy systems and (iii) existence of two-qubit mixed states more entangled than pure states having the same negativity or nonlocality. To support our conclusions, we performed a Monte Carlo simulation of 10610^6 two-qubit states and calculated all the entanglement measures for them. Our demonstration of the relativity of entanglement measures implies also how desirable is to properly use an operationally-defined entanglement measure rather than to apply formally-defined standard measures. In fact, the problem of estimating the degree of entanglement of a bipartite system cannot be analyzed separately from the measurement process that changes the system and from the intended application of the generated entanglement.Comment: 10 pages, 4 figures, to appear in the Journal of Computational Methods in Sciences and Engineering -- a special issue in memory of prof. S. Kielic
    corecore