65 research outputs found

    A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type

    Full text link
    Nonlocal models allow for the description of phenomena which cannot be captured by classical partial differential equations. The availability of efficient solvers is one of the main concerns for the use of nonlocal models in real world engineering applications. We present a domain decomposition solver that is inspired by substructuring methods for classical local equations. In numerical experiments involving finite element discretizations of scalar and vectorial nonlocal equations of integrable and fractional type, we observe improvements in solution time of up to 14.6x compared to commonly used solver strategies

    An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a modelling tool for processes with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues, which impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids, and robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analysing the speed of the travelling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator
    corecore