4,187 research outputs found

    Learning to Extract Motion from Videos in Convolutional Neural Networks

    Full text link
    This paper shows how to extract dense optical flow from videos with a convolutional neural network (CNN). The proposed model constitutes a potential building block for deeper architectures to allow using motion without resorting to an external algorithm, \eg for recognition in videos. We derive our network architecture from signal processing principles to provide desired invariances to image contrast, phase and texture. We constrain weights within the network to enforce strict rotation invariance and substantially reduce the number of parameters to learn. We demonstrate end-to-end training on only 8 sequences of the Middlebury dataset, orders of magnitude less than competing CNN-based motion estimation methods, and obtain comparable performance to classical methods on the Middlebury benchmark. Importantly, our method outputs a distributed representation of motion that allows representing multiple, transparent motions, and dynamic textures. Our contributions on network design and rotation invariance offer insights nonspecific to motion estimation

    Theory of light-activated catalytic Janus particles

    Full text link
    We study the dynamics of active Janus particles that self-propel in solution by light-activated catalytic decomposition of chemical "fuel." We develop an analytical model of a photo-active self-phoretic particle that accounts for "self-shadowing" of the light by the opaque catalytic face of the particle. We find that self-shadowing can drive "phototaxis" (rotation of the catalytic cap towards the light source) or "anti-phototaxis," depending on the properties of the particle. Incorporating the effect of thermal noise, we show that the distribution of particle orientations is captured by a Boltzmann distribution with a nonequilibrium effective potential. Furthermore, the mean vertical velocity of phototactic (anti-phototactic) particles exhibits a superlinear (sublinear) dependence on intensity. Overall, our findings show that photo-active particles exhibit a rich "tactic" response to light, which could be harnessed to program complex three-dimensional trajectories
    • …
    corecore