398 research outputs found

    Enhanced Living by Assessing Voice Pathology Using a Co-Occurrence Matrix.

    Full text link
    A large number of the population around the world suffers from various disabilities. Disabilities affect not only children but also adults of different professions. Smart technology can assist the disabled population and lead to a comfortable life in an enhanced living environment (ELE). In this paper, we propose an effective voice pathology assessment system that works in a smart home framework. The proposed system takes input from various sensors, and processes the acquired voice signals and electroglottography (EGG) signals. Co-occurrence matrices in different directions and neighborhoods from the spectrograms of these signals were obtained. Several features such as energy, entropy, contrast, and homogeneity from these matrices were calculated and fed into a Gaussian mixture model-based classifier. Experiments were performed with a publicly available database, namely, the Saarbrucken voice database. The results demonstrate the feasibility of the proposed system in light of its high accuracy and speed. The proposed system can be extended to assess other disabilities in an ELE

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Advances in Vibration Analysis Research

    Get PDF
    Vibrations are extremely important in all areas of human activities, for all sciences, technologies and industrial applications. Sometimes these Vibrations are useful but other times they are undesirable. In any case, understanding and analysis of vibrations are crucial. This book reports on the state of the art research and development findings on this very broad matter through 22 original and innovative research studies exhibiting various investigation directions. The present book is a result of contributions of experts from international scientific community working in different aspects of vibration analysis. The text is addressed not only to researchers, but also to professional engineers, students and other experts in a variety of disciplines, both academic and industrial seeking to gain a better understanding of what has been done in the field recently, and what kind of open problems are in this area

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF

    Heterogeneous recognition of bioacoustic signals for human-machine interfaces

    No full text
    Human-machine interfaces (HMI) provide a communication pathway between man and machine. Not only do they augment existing pathways, they can substitute or even bypass these pathways where functional motor loss prevents the use of standard interfaces. This is especially important for individuals who rely on assistive technology in their everyday life. By utilising bioacoustic activity, it can lead to an assistive HMI concept which is unobtrusive, minimally disruptive and cosmetically appealing to the user. However, due to the complexity of the signals it remains relatively underexplored in the HMI field. This thesis investigates extracting and decoding volition from bioacoustic activity with the aim of generating real-time commands. The developed framework is a systemisation of various processing blocks enabling the mapping of continuous signals into M discrete classes. Class independent extraction efficiently detects and segments the continuous signals while class-specific extraction exemplifies each pattern set using a novel template creation process stable to permutations of the data set. These templates are utilised by a generalised single channel discrimination model, whereby each signal is template aligned prior to classification. The real-time decoding subsystem uses a multichannel heterogeneous ensemble architecture which fuses the output from a diverse set of these individual discrimination models. This enhances the classification performance by elevating both the sensitivity and specificity, with the increased specificity due to a natural rejection capacity based on a non-parametric majority vote. Such a strategy is useful when analysing signals which have diverse characteristics, false positives are prevalent and have strong consequences, and when there is limited training data available. The framework has been developed with generality in mind with wide applicability to a broad spectrum of biosignals. The processing system has been demonstrated on real-time decoding of tongue-movement ear pressure signals using both single and dual channel setups. This has included in-depth evaluation of these methods in both offline and online scenarios. During online evaluation, a stimulus based test methodology was devised, while representative interference was used to contaminate the decoding process in a relevant and real fashion. The results of this research provide a strong case for the utility of such techniques in real world applications of human-machine communication using impulsive bioacoustic signals and biosignals in general
    • …
    corecore