500,943 research outputs found
Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces
© 2007 EUCA.A novel online-computation approach to optimal control of nonlinear, noise-affected systems with continuous state and control spaces is presented. In the proposed algorithm, system noise is explicitly incorporated into the control decision. This leads to superior results compared to state-of-the-art nonlinear controllers that neglect this influence. The solution of an optimal nonlinear controller for a corresponding deterministic system is employed to find a meaningful state space restriction. This restriction is obtained by means of approximate state prediction using the noisy system equation. Within this constrained state space, an optimal closed-loop solution for a finite decision-making horizon (prediction horizon) is determined within an adaptively restricted optimization space. Interleaving stochastic dynamic programming and value function approximation yields a solution to the considered optimal control problem. The enhanced performance of the proposed discrete-time controller is illustrated by means of a scalar example system. Nonlinear model predictive control is applied to address approximate treatment of infinite-horizon problems by the finite-horizon controller
Constrained nonlinear optimal control: a converse HJB approach
Extending the concept of solving the Hamilton-Jacobi-Bellman (HJB) optimization equation backwards [2], the so called converse constrained optimal control problem is introduced, and used to create various classes of nonlinear systems for which the optimal controller subject to constraints is known. In this way a systematic method for the testing, validation and comparison of different control techniques
with the optimal is established. Because it naturally and explicitly handles constraints, particularly control input saturation, model predictive control (MPC) is a potentially powerful approach for nonlinear control design. However, nonconvexity of the nonlinear programs (NLP) involved in the MPC optimization makes the solution problematic. In order to explore properties of MPC-based constrained control schemes, and to point out the potential issues in implementing MPC, challenging benchmark examples are generated and analyzed. Properties of MPC-based constrained techniques are then evaluated and implementation issues are explored by applying both nonlinear MPC and MPC with feedback linearization
Guaranteed robustness properties of multivariable, nonlinear, stochastic optimal regulators
The robustness of optimal regulators for nonlinear, deterministic and stochastic, multi-input dynamical systems is studied under the assumption that all state variables can be measured. It is shown that, under mild assumptions, such nonlinear regulators have a guaranteed infinite gain margin; moreover, they have a guaranteed 50 percent gain reduction margin and a 60 degree phase margin, in each feedback channel, provided that the system is linear in the control and the penalty to the control is quadratic, thus extending the well-known properties of LQ regulators to nonlinear optimal designs. These results are also valid for infinite horizon, average cost, stochastic optimal control problems
Robust Neighboring Optimal Guidance for the Advanced Launch System
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system
Al'brekht's Method in Infinite Dimensions
In 1961 E. G. Albrekht presented a method for the optimal stabilization of smooth, nonlinear, finite dimensional, continuous time control systems. This method has been extended to similar systems in discrete time and to some stochastic systems in continuous and discrete time. In this paper we extend Albrekht's method to the optimal stabilization of some smooth, nonlinear, infinite dimensional, continuous time control systems whose nonlinearities are described by Fredholm integral operators
- …
