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Robust Neighboring Optimal Guidance
for the Advanced Launch System

David G. Hull*

In recent years, optimization has become an engineering tool through

the availability of numerous successful nonlinear programming codes.

Optimal control problems are converted into parameter optimization

(nonlinear programming) problems by assuming the control to be

piecewise linear, making the unknowns the nodes or junction points of the

linear control segments. Once the optimal piecewise linear control

(suboptimal) control is known, a guidance law for operating near the

suboptimal path is the neighboring optimal piecewise linear control

(neighboring suboptimal control). Research conducted under this grant has

been directed toward the investigation of neighboring suboptimal control

as a guidance scheme for an advanced launch system. The list of

references is a list of papers presented at technical meetings; these papers

are included at the end of the report.

The first step is to obtain the optimal piecewise linear control for the

advanced launch system, upon which the neighboring optimal piecewise

linear control is based. These results have been obtained by using a

nonlinear programming code based on recursive quadratic programming

with numerical partial derivatives and are reported in Ref. 1. In an effort

to improve the results obtained by nonlinear programming, the suboptimal

control problem is solved by the shooting method which requires

analytical derivatives (Ref. 2). By guessing the control history, the

shooting method is completely desensitized to the guesses of the initial
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Lagrange multipliers. Ref. 2 shows that the optimal piecewise linear control

can be a good approximation of the actual optimal control.

Once the suboptimal control has been obtained, the next step is to

develop the neighboring suboptimal control for guidance about the

suboptimal path. Since this is a completely new research area, a simpler

launch model, the lunar launch problem, has been used to determine the

feasibility of this guidance strategy.

First results are reported in Ref. 3. Given a perturbation in the state

from the state corresponding to the suboptimal control, the control

parameter perturbations are obtained by minimizing the increase in the

performance index (second variation) subject to the constraint that the

final conditions are satisfied. This process leads to a set of gains which

multiply the state perturbations to get the control parameter

perturbations. At this point, time is the running variable, and while the

results are satisfactory, they give some indication that the method has not

yet been applied properly.

Refs. 4 and 5 are further steps to clarify the fundamental issues of

this guidance approach. In Ref. 5, the problem is reduced to a "fixed final

time" problem by using the horizontal component of velocity as the

variable of integration. These results indicate that neighboring suboptimal

control is now being formulated and applied correctly.

Continuing work is associated with using the time as the running

variable since this is the way most guidance systems operate.

Finally, a list of master's degrees awarded during this research effort

is given in Table 1.



References

•

•

Shaver, D. A., and D. G. Hull, "Advanced Launch System Trajectory

Optimization Using Suboptimal Control", Proceedings of the AIAA

Guidance, Navigation, and Control Conference, Portland, Oregon,

August, 1990.

Hull, D. G, and J. J. Sheen, "A Shooting Approach to Suboptimal

Control, Proceedings of the American Control Conference, Boston,

Massachusetts, June, 1991.

e Hull, D. G., and C. E. Helfrich, "Neighboring Extremal Guidance for

Systems with Piecewise Linear Control", Presented at the AIAA

Third Aerospace Planes Conference, Orlando, Florida, December,

1991.

, Hull, D. G., "Neighboring Suboptimal Control", Proceedings of the

American Control Conference, Chicago, Illinois, June, 1992.

• Hull, D. G., and M. J. Nowak, "Neighboring Suboptimal Control for

Vehicle Guidance", Proceedings of the Third Annual AAS/AIAA

Space Flight Mechanics Conference, Pasadena, California, February,

1993.



Table 1

MASTER OF SCIENCE DEGREES AWARDED

• Douglas A. Shaver, "Advanced Launch System Trajectory

Optimization Using Suboptimal Control, December, 1989.

g John R. Bain, Jr., "Suboptimal Guidance for the Advanced

Launch System", May 1990.

o Clifford E. Hilfrich, "Neighboring Extremals for Systems with

Piecewise Linear Control", August, 1991.

1 Michael J. Nowak, "Neighboring Extremal Guidance for Systems

with Piecewise Linear Control Using Multiple Optimization",

August, 1992.

Q William A. Libby, "Neighboring Suboptimal Control with Time

as the Running Variable", May 1993.



AIAA GNC Conference

Portland, Oregon Aug. 1990

Advanced Launch System Trajectory Optimization Using Suboptimal Control

///
Douglas A. Shaver* and David G. Hull t

Department of Aerospace Engineering and Engineering Mechanics

The UniversityofTexas at Austin _' .z_ --Q/_t--"Austin, Texas 78712 "_/ 2 2) .. O, 1 0

%..-/

Abstract It distance from exit plane to vehicle cg (ft)

The maximum-final-mass trajectoryof a proposed

configurationof the Advanced Launch System ispre-

sented. A model for the two-stagerocketisgiven;the

optimal control problem is formulated as a parame-

ter optimization problem; and the optimal trajectory

iscomputed using a nonlinearprogramming code called

VF02AD. Numerical resultsare presentedfor the con-

trois(angle of attack and velocityrollangle)and the

states.Afterthe initialrotation,the angleofattackgoes

to a positivevalue tokeep the trajectoryashigh as pos-

sible,returnsto near zeroto pass through the transonic

regime and satisfythe dynamic pressureconstraint,re-

turns to a psotivevalueto keep the trajectoryhigh and

to take advantage of minimum drag atpositiveangle of

attack due to aerodynamic shadingof the booster,and

then rollsofftonegativevaluestosatisfythe constraints.

Because the enginescannot be throttled,the maximum

dynamic pressure occurs at a singlepoint;there isno

maximum dynamic pressuresubarc.

To testapproximations forobtaininganalyticalsolu-

tions for guidance, two additionaloptimal trajectories

are computed: one using untrimmed aerodynamics and

one usingno atmospheric effectsexceptforthe dynamic

pressure constraint. It is concluded that untrimmed

aerodynamics has a negligibleeffecton the optimal tra-

jectory and that approximate optimal controlsshould

be able to be obtained by treatingatmosphericeffects

as perturbations.

List of Symbols

CL lift coefficient

CD drag coefficient

Cm pitching moment coefficient

D aerodynamic drag (lb)

g local gravitational acceleration (ft/sec 2)

h altitude (ft)

i orbit inclination (rad)

I.p vacuum specific impulse (sec)

J performance index

I aerodynamic reference length (ft)
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L aerodynamic lift (lb)

m vehicle mass (slugs)

MA aerodynamic pitching moment (ft lb)

M Mach number

P penalty function

p atmospheric pressure (lb/ft 2)

q dynamic pressure (lb/ft 2)

Sb aerodynamic referencearea (ft 2)

T thrust(Ib)

T_ac vacuum thrust(Ib)

t. staging time (sec)

V velocity (ft/sec)

a angle of attack (rad)

7 flight path angle (rad)

6 thrust glmbal angle (rad)

0 pitch angle (rad)

A longitude (rad)

p velocity roll angle (rad)

p atmospheric density (slug/ft a)

1" latitude (rad)

1" normalized time

w rotational velocity of earth (rad/sec)

_b heading angle (rad)

Subscripts

b

cg

e

I
i

o

$

to

body axes

center of gravity

exit
final

inertial
initial
sea-level
wind axes

I. Introduction

A program is under way to develope an unmanned,
all-weather, launch system for placing medium to large

payloads (-_ 120,000 lb) into low-earth orbit. A prospec-
tive design for this Advanced Launch System (ALS) is

shown in Fig. 1 to be composed of a core vehicle and
a booster. Both the booster and the core are ignited

at launch, and staging occurs when all the booster pro-



pellantis consumed.Payloadmasscanbeincreasedby
addinganotherbooster.

Partof thedesignprocessis toiteratethevehiclede-
signandtrajectorydesignuntil areasonablecombina.
tionisachieved.Thispaperisconcerned solely with the

optimal trajectory design of the proposed configuration.

The objective is to find the trajectory which maximizes

the final mass (since the engines burn throughout the

trajectory, this is also a minimum final time problem).

Any remaining propellant can be considered for conver-

sion to payload or s decrease in launch weight. The

physical model is that of flight over a rotating, spher-
ical earth with an exponential atmosphere. Launched

vertically from the surface of the earth, the payload is

to be placed into perigee of an 80am by 150am transfer

orbit. Because of structural considerations, there is a

limit on the amount of dynamic pressure the vehicle can
withstand.

This study has had several goals: Ca) to determine the

maximum-final-mass trajectory of the proposed ALS,

(b) to generate initial Lagrange multipliers for a shooting

code to investigate neighboring extremal guidance, and

(c) to determine if atmospheric effects (pressure thrust

and aerodynamics) can be considered M a perturbation
to vacuum thrust and _avity for guidance law devel-

opment. While only (a) and (c) are reported here, (b)

requires the use of an exponentiad atmosphere. Hence,
the dynamic pressure limit based on a standard atmo-

sphere has been lowered to have the same effect in an

exponential atmosphere.

In Section 2, a model is presented for the proposed

ALS configuration. Then, the optimal control problem

is formulated in Section 3 sad converted into a param-
eter optimization problem in Section 4. This is done

for relative ease in obtaining an optimal trajectory. Nu-
merical results are presented in Section 5 in the form

of optimal controls, states, and dynamic pressure. Also

contained in Section5 are two additional optimal trajec-

tories based on untrimmed aerodynamics and neglected
atmospheric effects. Finally, conclusions are presented
in Section 6.

II. Physical Model

In this section, a physical model for the Advanced

Launch System (ALS) is defined. It includes the equa-

tions of motion for flight over a rotating, spherical earth
with an exponential atmosphere and the mass, propul-

sion, and aerodynamic properties of the vehicle.

Equations of Motion

Since sideslip causes drag, the vehicle is assumed to fly

at zero sideslip angle, so that only the angle of attack
gives the orientation of the vehicle relative to the free
stream. The direction of the lift vector is then controlled

through the bank angle or, more specifically, through the

velocity roll angle.

A three-degree-of-freedom model for vehicle motion

can be obtained from a six-degree-of-freedom model by

one of two aerodynamic approximations: untrimmed

aerodynamics or trimmed aerodynamics. For a rocket,
untrimmed aerodynamics is equivalent to setting the

thrust gimbal angle to zero and ignoring the aerody-
namic pitching moment. On the other hand, with

trimmed aerodynamics, it is assumed that the pitch rate

is zero (pitching moment equals zero) so that the gim-
bal angle can be determined as a function of the angle
of attack.

In view of the above comments, the three-degree-of-

freedom equations of motion relative to the earth are

given by (Ref. 3)

= Vcoa cos /
_'c05 I"

_. = Vc°sTsin¢
r

h = Vsin't

= _(Tcos(_ + 6) - D - mgsinT)

+ r_a2eosr(cosrmin7 - sinrcosTsin¢)

= + 6) + L)co, - mgcosT] (1)

r°J2
+ Vcos'f + 2wcosrcosd; + -_-cosr(cosrcos7

r

+ ainrsinTsin¢)
1

_b = mVcosT (Tsin(a + 6) + L)sinp

V
- --tanrcos_/cos_ + 2w(coartanTsin¢ - sinr)

1"

rid 2
cosrsinrcosd_

Vcos7

= -

In these equations, ,_ is the longitude, r is the latitude, h

is the altitude above mean sea level, V is the velocity, 7

is the flight path angle, ¢ is the heading angle, m is the
mass, r = r, + h is the distance from the center of the

earth to the vehicle center of gravity, w is the angular
velocity of the eath, D is the drag, L is the lift, T is the

thrust, I,p is the specific impulse, 6 is the gimbal angle
of the thrust vector, a is the angle of attack, and p is the

velocity roll angle. With regard to signs, a positive roll

angle generates a negative heading toward the south.
For trimmed aerodynamics, the pitching moment,

which is the sum of the aerodynamic pitching moment

and the thrust pitching moment, is set equal to zero, and

the resulting expression solved for the thrust gimbal an-

gle. With reference to Fig. 1 and by assuming that _ is
small, this process leads to

MA
6 = (2)

Tit



Ib

MA÷ T It =ln_

Figure 1: Force and Moment Nomenclature

where MA is the aerodynamic pitching moment ant It

is the distance from the center of gravity to the exit
plane of the engines. Because 6 is dependent on the

aerodynamic pitching moment and the moment is de-

pendent on the pitching moment coefficient, it results

that 6 is linear in a with the coefficients varying with
time. Aerodynamics is discussed in further detail later
in this section.

E_s. (1) have two singularities: V - 0 in the _f and

the ¢ equations and 7 - _ in the _ equation. To re-
move the V singularity and to clear the launch tower,

the vehicle is flown vertically for 3 sec with the angle of

attack and the bank angle being chcmen so that _ -- 0
and ¢ = 0. To remove the 7 singularity, the vehicle is

pitched over at constant heading (¢ -- 0) for 1.0 sec at
a constant negative pitch rate 0 whose optimal value is

determined. Since 0 - 7 + a, the angle of attack during
pitch-over is given by

= - + o(t - 3) . (3)

Finally, the bank angle is chosen to make _ = 0. With

a fiat earth model, p = 0.

Earth

The earth is taken to be a rotating, spherical body
whose surface is described by the mean sea-level radius

r, and whose gravitational acceleration varies with alti-

tude according to the inverse-square law

g= ra 2g= (7-) (4)

where g_r2s represents the earth's gravitational parame-

ter. Sea-level gravitational acceleration g,, r,, and the

rotational velocity of earth w are known constants given
as

ft
r, = 2.09256725E+7 ft g, = 32.174

' sec 2

rad
w = 7.2921158E-5 -- . (5)

sec

Atmosphcre

The atmosphere is represented by the exponcutia[
functions

= =
L (6)
P, P, A2

where the scale-height constants are given by

Sz = 23,800 ft, ,_2 = 23,200 ft (7)

and the sea-level values of the density and pressure are

slugs lb
p, = .002377 _, p, = 2, 116.24 _-_ . (8)

Finally, the speed of sound is given by

a = (9)

where 7 = 1.4 is the ratio of specific heats of air.

Mass Characteristics

The ALS configuration consists of s core vehicle as

depicted in Fig. 1. The take-off mass of the ALS con-

sists of the inert vehicle mass, the propellant mass, pay-
load mass, payload margin mass, and the payload fairing

mass (Table I).

Table I: Mass Characteristics

Vehicle Vehicle Component Take-off Mass

(slugs)
Core

Booster

Inert Mass

Propellant

Payload

Payload Margin

Payload Fairing

5,474.29

45,974.38

3,729.71
372.97

1,215.89

Total Core 56,767.26
i

Inert Mass

Propellant
Total Booster

6,740.85

45,066.82

51,807.67

Core + Total Take-off Mass i08,574.93
Booster

The center of gravity is located relative to a coordinate

system whose origin is at the tip of the core vehicle,

whose z axis is down the longitudinal axis, and whose

y axis is toward the booster. For the first stage, the

vehicle center of gravity is assumed to have coordinates

z¢ 9 = 165.45 ft , Yc9 = 10.36- .0388t ft (10)

so that i= is constant and has the value

It = i- z_g = 110.81 ft (11)



where! = 276.26 ft is the length of the core vehicle.

Actually, zca varies slightly but this variation has been
neglected. For the second stage, untrimmed aerodynam-

ics is used so the cg position is not needed.

Propulsion

The ALS is powered by ten liquid hydrogen/liquid

oxygen low cost rocket engines (LCE): seven power the

booster and three power the core. All engines are ig-
nited at launch; staging occurs when the boo6ter fuel is

depleted; and the core engines burn until insertion.

Propulsion characteristics of interest are the thrust

T, vacuum thrust Tv,c, and the specific impulse by(see

Eqs. 1). If the exit pressure is conservatively approxi-

mated as p, = 0, the thrust of a single engine is modeled
as

r+ = T ,o' - vA.' (12)

where the prime denotes one engine, p is the atmospheric
pressure at the altitude of the rocket, and Ae' is the exit
area. Date relevant to one LCE are as follows:

T_,¢' = 580,110.0 lb

A,' = 40.381 ft 2 (13)

I0p' = 430.0 see .

For the complete vehicle,

T = kT', I,p = I, v' , Tv,, = kT,,: (14)

where k = 10 before staging and k = 3 after staging.
Specific impulse is like specific propellant consumption

(weight flow rate of propellant per pound of thrust);
hence, it has the same value regardless of the number

of engines operating.

Um = Um(M, ) (16)

where M denotes the Math number and the bar indi-

cates that the moment is about a fixed point (launch

cg). About the actual center of gravity, the moment is
given by

C,_ =Um - CD Y¢9 - 10.36
l (17)

since zce is assumed not to change.
While the aerodynamic data could have been used in

tabular form with linear interpolation to read the tables,

the approach taken is to assume polynomials in a with

Maeh-number-dependent coefficients. For the first stage,
the coefficients are written as

CD = CD,(M) + CD._ (M)a _ + CD..s(M)a 3

Ct, = CI..(M)a (18)

_, = gmo(M) + Um.(M)a

where the Mach-number-dependent terms have been ob-

tained from cubic-spline curve fits of the tabular data.

After staging, the flow regime is hypersonic and the aero-

dynamic force coefficients are modeled as

CD = CD, + CD, a + CDo,a 2

CL = eL.a+ CL., 2 (19)

where the coefficients of a are constants. Also, pitching

moments are assumed to be negligible after staging, that

is, untrimmed aerodynamics are used (_ = 0).

A peculiarity of the aerodynamics of the combined
vehicle at supersonic and hypersonic speeds is that the

drag coefficient has a minimum at a positive angle of

attack. This is caused by the aerodynamic shading of

the booeter by the flow field of the core.

Aerodynamics

The drag, lift, and pitching moment are related to

their respective coefficients by the standard equations

D = qSbCD , L = qSbCz, , MA = qS_ICm (15)

where q = _pV _ is the dynamic pressure, S, =
1413.71 ft 2 is the cro_-sectional area of the combined

vehicle (booster + core), and i is the length of the core.
While the aerodynamic coefficients are needed at and

about the center of gravity (cg), the aerodynamic data
has been provided at and about the launch cg. Although

the drag and lift transfer directly, the moment changes

with cg position. Therefore, the aerodynamic data at

the cg must be related to the launch cg.

The aerodynamic data are preliminary estimates as-
sociated with the development of the sixrdegreee-of-

freedom simulation presented in Ref. 4. These data are

provided in tabular form (Tables 2 through 6) consistent
with the functional relations

HI. The Optimal Control Problem

Formally the optimal control problem considered here
is to find the control history u(t) which minimizes a per-
formance index of the form

J = (20)

subject to the differential constraints

- f(x, u) , (21)

the prescribed initial conditions

to = t,. , Zo = zo. , (22)

the prescribed final conditions

= 0, (23)

and a state-variable inequality constraint

CD = CD(M,o) ,eL = CL(M,a) , s(.) 0 . (24)



Each of these quantities is discussed below.

State Variables and Control Varables

The state variables are z T = [Ar h V 7 ¢ m] while
the control variables are u7" = [a p].

Performance Index

It is desired to maximize the final mass. Hence, the

performance index is taken to be

¢ = (25)
mre]

where the minus sign is included because the perfor-

mance index is actually minimized and where mrel is

the sum of the payload mass, the payload margin mass,
and the payloaA fairing mare. A performance index of

¢ = -1.0 means that the reference mass is inserted into
orbit with no extra fuel.

Differential Constralntm

The differential constraints are the equations of mo-

tion (Eqs. 1) completely expressed in terms of the state
variables and the control variables.

Prescribed Initial Conditions

For the trajectory design problem, the initial condi-
tions are taken to be

to = 0sec ,A, = -80.54deg ,to = 28.5deg

h,--0ft ,Vo O ft= ,70 = 90.0 deg (26)
$ec

¢0 = 0.0 deg ,mo = 108,574.93 slugs

During the vertical rise segment, the heading angle is
undefined, so the initial condition on ¢ is actually the

heading angle during the pitch-over segment.

Prescribed Final Conditions

The Advanced Launch System is being designed to

place a nominal payload at perigee of an 80nm by 150nm
transfer orbit of 28.5 deg inclination. As a consequence,

the equality constraint residuals are

ft
41 = h/- 486,080 ft 42 = I'_s - 25,776.9 --

' _C

43 -- _[! , 44 = C08 i! -- C08(28.5 deg) (27)

where the inertial velocity and the inclination are related

to the relative states as follows (Ref. 5 and 6)

V, = [V 2 + 2Vr_cosTeos¢cos, + (r_cosr) 2] + (28)

cosi=
cosr(Vcosvcos+, + r+cosr)

[V_cos27 + 2VrwcosTcos¢cosr + (rwcosr) 2] ½

State-Variable Inequality Constraint

Based on structural considerations, the ALS must

not exceed a maximum dynamic pressure of q =

650 lb/ft 2. Therefore, the state-variable inequality con-
straint residue S is

1
S = -_pV - 650 lb/ft 2 (29)

Actually, in a standard atmosphere, the limit is qmor =

850 lb/ft _. The value of 650 lb/ft 2 is chosen because the

value of p is approximately 20% smaller in the exponen-

tim atmosphere than the standard atmosphere around
the maximum dynamic pressure portion of the trajec-

tory.

IV. The Suboptimal Control Problem

The optimal control problem is converted to a param-

eter optimization problem (suboptimal control problem)

as follow: (a) the time is normalized by introducing the

transformation r = _; (b) the control u(t) is replaced
by a set of nodal points which is linearly interpolated,

and (c) the state-variable inequality constraint is con-
verted to a point constraint by using a penalty function.

Because of the time transformation, the boundary val-

ues of r are given by

3 4

to---0, 1-p--_.], ¢1--_-1,

153.54
r,= --, _! = X (30)

t!

where tv = 3 see is the time at the beginning of pitch-
over and tl = 4 see is the time when three-dimensionai

flight begins. Staging occurs when all of the booster
propellant is consumed; hence, t, = 153.54 see.

Figure 2 shows the arrangement of nodal points in

each stage. Nine nodes are used for the control during

the first stage, and five for the control during the second

stage. Even though the duration of the first stage is
shorter than that of the second, there is more activity in

during the first stage, making more nodes desireable.

The nodes are equally spaced in each stage so that the
node times are

r,-rl,. 1) i 1 9
r i -- r I + "'-_tl -- , = ""

1 -- Tj ./

r_=r,+_(-10) , i=10---* 14 .
(31)
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Figure 2: Example Control History

Note that there are two control nodes at the stage time.
This has been done in order to find the true suboptimal
control.

The dynamic pressure constraint is converted to a pa-

rameter inequality constraint by introducing the penalty
function

J,;P - - m .2[(t - _. 0 (32)
q¢!_68

which accumulates value when q > q,n_:. The constraint
becomes

P! > 0 . (33)

To compute P/, the penalty function is differentiated to
form

_6 = _min2[(t _ qm__) ' 01 (34)

where

Po= o. (35)

In all, the nonlinear programming problem involves 30

parameters, that is, the parameter vector hi given by

X = [O,al ,..., a14, #t ,..., #14, ill (36)

where 0 is the pitch rate during the pitch-over, ok, Pk

are the angle of attack and the bank angle nodes, and

t/is the final time.

If values of the parameters (36) are known, the differ-

ential equations (1) and (34) can be integrated through
the mission to determine the states and P at the fi-

nal time. Then, the performance index (25), the orbital

insertion equality constraint residuals (27), and the dy-

namic pressure inequality constraint (29) can be com-
puted. It follows that the performance index and the

constraints are functions of the parameters (36) such
that the nonlinear programming problem can be ex-

pressed as follows:

Find the set of parameters X which minimizes the per-
formance index

j= ms(x) (37)
rnres

subjectto the equalityconstraints

el=hi(X) 1=0
hi°

c2= I =o
V,),

ca = = o (38)

C4 = c°'vil(X) 1 = 0
cosil°

and the inequalityconstraint

Cs = P/(X) >_ 0 . (39)

Derivatives required by the nonlinear programming al-

gorithm are computed by central differences.

V. Numerical Results

The optimal trajectoryhas been computed using a

nonlinearprogramming code known asVF02AD which is

based on quadraticprogramming. Optimal controlhis-

toriesare presented in Fig.3,while the resultingstates

are shown in Figs.4 through 7. The magnitude of the

performance index is 103.94% where 100% "" 171,120

lb. This means that an additional6,742 Ib of payload

can be placed inorbitwith thisvehicleby using the op-

timal trajectory.The vehicleisinsertedinto orbit at

t! --363.8 sec and the optimal value of the pitch rate

during the 1.0sec pitch-overis-.02005rad/sec.

Shown in Fig.8 isthe dynamic pressure. It isseen

that the maximnm dynamic pressureoccurs at a single

point and not along a qm,, subarc. This isdue to the

no-throttlingdesignof the vehicleand the factthat the

aerodynamic forcesneeded toflyalong q - qma= cannot

be achieved. Optimal trajectorieswith lower values of

qm,, have been calculated,and the resultsare the same.

Itisdifficulttocompletelydetermine the meanings of

the optimal controlhistoriesbecause performance-index

minimization and constraintsatisfactionare going on

allthrough the trajectory.For angleofattack,itisseen

from Fig.3 thatthe vehicleinitiallygoes to positivea to

achievealtitudeand decreaseq.Then, the dip in a from

t -"40 to 60 sec allowsthe vehicleto pass through the

transonicregime efficiently(Mach I occursatt_ 50 sec)

and tosatisfythedynamic pressureinequalityconstraint

(qma= occurs att_.70 see).Next, the vehiclereturnsto

positivea toget low drag and todecreasethe magnitude

of3. Staging occursaround Mach 8 and the rolloffinc_

from positivetonegativevaluesduringthe second stage

helps pullthe trajectorydown to meet the finalcondi-

tions.For the velocityrollangle,the nonzero valuesat

the beginningof the trajectoryseem to be caused by the

rotationaleffectsofearth where the vehiclewants to fly

at constant latitudethroughout most of the firststage.

Changes in p near the end of the trajectoryhelp cause

constraintsatisfaction,particularlyin the orbitinclina-
tion.

Additional optimal trajectorieshave been computed

with the intentof determining what kinds of approxi-

mations can be made in order to obtain approximate



analyticalsolutionsforguidancepurposes.First,theef-
fectof usinguntrimmedaerodynamics(6 = 0) rather

than trimmed aerodynamics is shown in Fig. 9 and 10 to

change only slightly the optimal controls and to cause a

relative change in the performance index of 0.2% (376.5

lb). Hence, untrimmed aerodynamics is a reasonable
approximation. Second, the question of whether or not

atmospheric effects can be considered a perturbation is

considered. This means that the pressure term in the

thrust and the aerodynamics are neglected; however, the

dynamic pressure constraint is maintained because it is a

structural constraint. The optimal controls for this case

are shown in Fig. 11 and 12 and lead to a relative increase

in the performance index of 16% (27,379 lb). Trajectory

profiles for the atmosphere and no-atmosphere cases are

shown in Fig. 13. The optimal control which results

from the no-atmosphere case is reasonably close to that
of the atmosphere case and has the same general trend.

This seems to indicate that atmospheric effects can be

treated as a perturbation.

VI. Discussion and Conclusions

The maximum-final-mass trajectory has been com-

puted for a two-stage rocket representing the Advanced

Launch System and operating over a rotating, spherical
earth with an exponential atmosphere. The problem is

converted into a parameter optimization problem by re-

placing the control histories by node pointJ and using

straight-line interpolation to form functions. Then, a

nonlinear programming code known as VF02AD k used

to perform the optin_ation. Optimal trajectories have

been calculated for three cases: (a) trimmed aerody-
namics, (b) untrimmed aerodynamics, and (c) no atmo-

sphere. With the assumption of trimmed aerodynamics,

the aerodynamic model is as accurate as po_ibh for a

three-degree-of-freedom analysis. The optimal trajec-

tory is characterized by positive angles of attack over
most of the path with a prominant decrease during pas-

sage through maximum dynamic pressure. The maxi-

mum dynamic pressure occurs at a single point rather

than over a subarc because the engines cannot be throb
tied.

To obtain analytical solutions for guidance purposes,

approximations must be introduced. The effect of re-

placing trimmed aerodynamics by untrimmed aerody-
namics has been examined, and it is concluded that

untrimmed aerodynamics gives good results.

Next, the effect of neglecting atmospheric effects

(pressure thrust and aerodynamics) has been investi-

gated. With the exception of the transonic and max-
imum dynamic pressure portion of the trajectory, it is

clear that atmospheric effects can be considered as per-

turbations to the trajectory generated by vacuum thrust

and gravity. During the passage through the transonic
and maximum dynamic pressure part of the trajectory,

there is a difference of 14 deg betweerl the atmosphere

and no-atmosphere solutions. Since this region consti-
tutes less than fifteen percent of the whole trajectory,

treating atmospheric effects as perturbations could yield

satisfactory results.
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Table 2. Lift Coei_clent (core + booster)

Subsonic Data

of Attack (des)

M 4-0.0 +2.0 4-4.0 4-6.0 4-8.0 4-10.0

0.0 0.0 0.08876 0.1775 0'.2663 0.355 0.4438

0.2 0.0 0.08876 0.1775 0.2663 0.355 0.4438

0.4 0.0 0.08876 0.1775 0.2663 0.355 0.4438

0.6 0.0 0.08876 0.1775 0.2663 0.355 0.4438

0.8 0.0 0.08876 0.1775 0,2663 0.355 0.4438

1.0 0.0 0.08720 0.1744 0.2616 0.3488 0.4360

Supermnic/Hypensonic Dat,

An_e of Attack (de_)
M 0.0 2.0 4.0 6.0 8.0 10.0

1.2 0.0 0.0882 0.1724 0.2586 0.3448 0.431

1.5 0.0 0.086 0.171 0.260

2.0 0.0 0.090 0.175 0.262

2.5 0.0 0.098 0.181 0.268

3.0 0.0 0.100 0.1-92 0.278

3.5 0.0 0.102 0.200 0.290

4.0 0.0 0.104 0.202 0.291

5.0 0.0 0.104 0.206 0.298

6.0 0.0 0.103 0.203 0.300

7.0 0.0 0.100 0.195 0.298

8.0 0.0 0.095 0.185 0.290

0.351 0.431

0.354 0.435

0.370 0.460

0.385 0.490

0.401 0.510

0.405 0.510

0.410 0.509

0.408 0.508

0.400 0.502

0.395 0.560

Angle of Attack (deg)

M -2.0 -4.0 -6.0 -8.0 -I0.0

1.2 -0.084 -0.170 -0.260 -0.350 -0.431

1.5 -0.086 -0.171 -0.260 -0.351 -0.431

2.0 -0.090 -0.175 -0.262 -0_354 -0.435

2.5 -0.098 -0.181 -0.268 -0.370 -0.460

3.0 -0.160 -0.192 -0.278 -0.385 -0.490

3.5 -0.120 -0.200 -0.260 -0.401 -0.510

4.0 -0.120 -0.215 -0.310 -0.420 -0°520

5.0 -0.120 -0.225 -0.327 -0.442 -0.542

6.0 -0.125 -0.225 -0.334 -0.451 -0.567

7.0 -0.115 -0.222 -0.332 -0.452 -0.580

8.0 -0.110 -0.218 -0.325 °0.450 -0.5(35



Table 3. Drag Coefficient (core + booster)

Subsonic Data

AnKle of Attack (deg)

M ::kO.O 4-2.0 ::k4.0 4-6.0 ::k8.0 4-10.0

0.0 0.1870 0,1904 0.2024 0.2254 0.262 0.314

0.2 0.1872 0.1906 0.2026 0.2256 0.2622 0.3142

0.4 0.2062 0.2096 0.2216 0.2446 0.2812 0.3340

0.6 0.2599 0.2633 0.2753 0.2983 0.3349 0.3877

0.8 0,3480 0,3514 0.3634 0.3864 0.4230 0.4758

1.0 0.7800 0.7834 0.7954 0.8184 0.8550 0.9078

Supersonic/Hyperlonlc Data

AnKle of Attack (d_)

M 0.0 2.0 4.0 6.0 8.0 10.0

1.2 0.800 0.805 0.815 0.838 0.875 0.928

1.5 0.740 0.703 0.645 0.640 0.635 0.635

2.0 0.672 0.656 0.555 0.525 0.525 0.525

2.5 0.648 0.628 0.512 0.468 0.465 0.455

3.0 0.637 0.608 0.486 0.448 0.431 0.418

3.5 0.630 0.596 0.470 0.425 0.406- 0.392

4.0 0.628 0.587 0.460 0.410 0.385 0.368

5.0 0.620 0.572 0.448 0.392 0.355 0.352

6.0 0.617 0.570 0.446 0.382 0.348 0.348

7.0 0.615 0.567 0.445 0.378 0.340 0.340

8.0 0.615 0.565 0.445 0.372 0.340 0.338

AnKle of Attack (deg)

M -2.0 -4.0 -6.0 -8.0 -10.0

1.2 0.803 0.815 0.838 0.875 0.928 '

1.5 0,745 0.750 0.7"/'3 0.800 0,871

2.0 0.690 0.708 0.731 0.768 0.822

2.5 0.665 0.680 0.706 0.745 0.790

3.0 0.648 0.651 0.688 0.730 0.771

3.5 0.640 0.650 0.675 0.716 0.757

4.0 0.631 0.641 0.665 0.706 0.745

5.0 0.625 0.635 0.651 0.692 0.731

6.0 0.610 0.625 0.646 0.686 0.727

7.0 0.610 0.620 0.640 0.685 0.730

8.0 0.610 0.620 0.640 0.684, 0.725

AnKle of Attack (deg)

M -2.0 -4.0 -6.0 -8.0 -10.0

0,0 -0.0201 -0.044 -0.067 -0.091 -0.115

0.2 -0.020 -0.044 -0.067 -0,091 -0.115

0.4 -0.019 -0,043 -0.067 -0,091 -0.115

0.6 -0.018 -0.042 -0.066 -0.089 -0.113

0.8 -0,016 -0.040 -0.064 -0.087 -0.111

1.0 -0.004 -0.027 -0,051 -0.075 -0.098

1.2 0.003 -0.029 -0.058 -0.089 -0.119

1.5 0.009 -0.019 -0.048 -0.077 -0.106

2.0 0.009 -0.0155 -0.045 -0.071 -0.097

2.5 0.007 -0.016 -0.043 .0.0(;7 -0.092

3.0 0.005 -0.018 -0.041 -0.063 -0.089

3.5 0,004 -0.018 -0.040 -0.062 -0.086

4.0 0.004 -0.019 -0.040 -0.062 -0.085

5.0 0.005 -0.018 -0.038 -0.058 -0,082

6.0 0.008 -0.017 -0.028 -0.058 -0.078

7.0 0.008 -0.017 -0.028 -0.058 -0.076

8.0 0.008 -0.017 -0.028 -0.058 -0.075

Table 5. Lift Coefficient (core vehicle)

Angle of Attack (des)

M :l:0.0 :1:2.0 +4.0 i6.0 -1-8.0 ±10.0

8.0 0.2062 0.2089 0.2206 0.2417 0.2733 0.3160

I0.0 0.2180 0.2201 0.2313 0.2523 0.2835 0.3262

12.0 0.2353 0,2374 0.2486 0.2703 0.3024 0.3459

Table 6. Drag Coefficient (corevehicle)

Angle of Attack (des)

M ±o.o ,2.o ±4.0 +6.o _8.0 ±10.0
8.0 0.2062 0.2058 0.2_ 0.2417 0.2733 0.3180
I0.0 0.2180 0.2201 0.2313 0.2523 0.2835 0.3262

12.0 0.2353 0.2374 0.2486 0.2703 0.3024 0.3459

Table 4. Pitching Moment Coefficient (core +
booster)

Angle of Attack (deg)

M 0.0 2.0 4.0 6.0 8.0 10.0

0.0 0.0035 0.0271 0.0508 0.0744 0.0981 0.1217

0.2 0.0035 0.0271 0.0508 0.0744 0.0981 0.1217

0.4 0.0040 0.0276 0.0513 0.0745 0.0986 0.1222

0.6 0.0052 0.0288 0.0538 0.0757 0.0998 0.1234

0.8 0.0072 0.0308 0.0558 0.0777 0.1018 0.1254

1.0 0.020 0.046 0.072 0.098 0.124 0.150

1.2 0.033 0.062 0.093 0.123 0.153 0.183

1.5 0.038 0.066 0.095 0.124 0.153 0.182

2.0 0.033 0.059 0.085 0.111 0.134 0.162

2.5 0.030 0.056 0.077 0.097 0.120 0.135

3.0 0.029 0.052 0.071 0.087 0.103 0.116

3.5 0.028 0.049 0.066 0.080 0.094 0.099

4.0 0.027 0.047 0.061 0.076 0.0595 0.099

5.0 0.026 0.045 0.057 0.068 0.085 0,098

6.0 0.026 0.042 0.054 0.068 0.082 0.096

7.0 0.0255 0.042 0.053 0.068 0.082 0.096

8.0 0.0255 0.042 0.052 0.068 0.082 0.097

I0



A StlOOTING APPROACll TO SUBOPTIMAL CONTI:_OL /9t_- ,I,/q/..//--/

David tl.11.111a.d ,lyh-Jor,g Shc_'n2

Department of Aerospace Engi.eering aml l",ugineeting Mechanics
The University of "l'ex_s at A._tin

Abstract

The shooting method is used to solve the suboptimal control prob-
lem where the control history is mumed to be piecewise linear.

Suboptimal solutions san be obl_,_<:l without di/_:uity a-d can
by increasing the number of nodes lead to accurate approximate

controls and good starting multipliers for the regular shooting

method. Optimal planar launch trajectories are presented for the
Advanced Launch System.

1. Introduction

The original motivation for using the shooting method to wive the

suboptimal control problem (piecewise linear control) hal been
to calculate an accurate suboptimal control and ultimately to

find the corresponding neighboring extrenud feedback control rule.

Since aermpace minima are usually quite list, an appt_'hnste op-
timal control can deliver most of the optimal pedomumee. Then,

the ability to compute the suboptimal control and the mdghboring

extrema] without difficulty would be nsduL

In this paper, the shooting method is developed for tile subop-
timal control probk-m and used to optimize the Adv_ced Launch

System trajectory. Tim nsual sensitivity o/" the solutiom peocess
to the initial guesses disappears completely, and mtutio_ are ob-

tained without difficulty. Of course, only an approQdmte optima]
control is achkwed, but if it is not good eaonght, its accuracy can

be improved by increasing the number of control nodes.

2. Suboptimal Control Problm

The standard optimal control problem is to find the control u(t)

which minimizes the lQdar perforaumco index

II

J = _{z:,t:) +/: L(t,z,u)dt O)

subject to the system dynamics

=/(t,z,.), (2)

and the prescribed boundary conditions

io=O, zo-'=o., 'k(=.+,t,,)"O. (3)

The dimensions of z, u, and ¢ are n X 1, r X 1, and p X 1, rmpec-

tively. This problem is made into a suboptimal control problem
by normalizing the final time through the transformation r m ill I

and by restricting the class of functiom to which the optimal con-
trol can belong. Here, the restricted class is tluLt of piecewlse

linesr functions The end points us, ..., um of the straight line
segments are called nodes.

MJ Thompson Regents Profatm¢
2Graduate Reses:¢h Auistt_t

Formally, this fixed-final-time suboptimal control problem is

to find the parameters u,, ,.., u,, |l which minimize the perfor-
mance index

J m _(zl, tl) + f:' L(r, z, uh .... u.,, 13)dr (4)

subject to the dyntmics

z'= I(r,=,_. .... "-,*s). O)

the pra_bed boundary conditions

re,f0, zoffi=o., r:=l, ¢(z.tl) -- 0. (e)

In these equations, the prime denotes a deriwtive with respect to

r+ and

L(n=,.s,...,_.t:) m tl/.(tl_,=,")

r(_,=,.,,...,,_.,l:) = tlf(tln=,u)
(v)

where

Ult+| -- Uk(_.(r) - v, + ___ - _,), _ _<r < _., (8)

Lad the node times Tb are fixed.

By the usual arguments of the calculus of va_ttions, the equ_.

tions defining the suboptinud solution are given by

z'--I

r = -B.T R = L + _rL
(9)

_'_..,r: 0 k, l,...,,,
"_: [t+dr -G,, Gf++vr+

and .

r.=O, _o=_, r_=l, ,_=O. _:=_,. (m)

& shooeaz _th0d

To put the msboptlmal control problem in a form suitable for ap-

plying the shooting method, new sttte, et(r) and w(r) are in-

troduced to eliminate the integrtk in Eq. (9). The optimality
conditions become

_d
1"o*=0 ,

r/ffil,

z' .. f,

;,= -_._
<-/L.
10 _ a_ '_1

_0 "I :CO., t'J_ _" O,

+ ffi O, 4!ffi6"_,_,
t_ t " O, Wl : -_t I •

t_e = O
(12)



If a new sta_e wxtor :(r) is ,h.iincd as

:r = [:T ,kT,., ... ,.,. '"1 (13t

af.J a paranv't_'r vr(lor is h,trodlw_]_

Z = In, ... ,,_,t/l, (14)

the differentia[ equations (! i) can be rewritten in the form

z' = F(T,:,a) (15)

Of the initial states, there are l 4- n 4- m 4- l conditions; only

Ao is unknown. At the final time, there are in Eqs. (12) I + p +

n + m + 1 final conditions. Of these, p equations are solved for
the p Lagrange multipliers Is which are in turn eliminated from

the remaining conditions to form

h(zs.=) = 0 (10)

whose dimension is (n + m + I) x 1.

The derivation of the equations for the shooting method is
straightforward and leads to the following algorithm:

1. Guess Ao and a

2. Integrate from r0 = 0 to r/= 1

3,

4.

z' : F zo known

q,; = F,,_ 4% = [o I 0 01r

• ' = F,_ +F. $o,=0

Calculate I[/=1[.

(17)

Calculate 6_ and 6a by solving

['_ ] --al= (18)[h,,4%_ k,,'_s] _a

and suing • norm reduction v.heme to determine a.

5. Check for convergence (Jlhli< el. If not, go to 2.

The advantage of this method is that there is absolutely no

influence of J_o on x. On the other hand, the sensitivity of the

shooting method to Ae is replaced by having to accept an appr_-
imate solution. However, by using a reasonable number of nodes,

it should be possible to obtain Ae's for which the exact shooting

method can he converged.

4. Optimal Plznar T_ectory for the ALS

The Advanced Launch System it • two-stage inches consisting of
a core with • side-mounted booster. Staging occur= at the fixed

time of burnout of the booster. ReL 1 contains • description of
the physical model.

In the optimization problem, the performance index b the final

mass; the state equations are the eq',uttimm of motion for flight in
• great circle plane over • nonrotating sphe:ical earth where the

control is the angle of attack; the initial conditions ate all specified;

and final conditions ate imposed on altitude, velocity, and flight

path angle.

Converged results are presented in Table I and Fig. I for three

first and second stage node arrangements. Starting multipliers for
the 3-2 case are given in Table 1, and the control nodes are taken

to be o -- -.5, 10., 6, 4, -4. dug and t/= 300. see.. Convergence

required 17 iterations and 241 se¢ of CPU time on a CDC Cyber

computer. Also presented are the converged values obtained from

the standard shooting method. Note that the optimal results are

approached as the number of nodes is increased.

Other than having to derive the multiplier equations, no diffi-

culties have been encountered during these calculations.

5. Condusi0ns

The sho,,ting al, proarh to suboptimal control is an effed]ve way

t_, obtai, approximate optima] trajectuxirs anti to obtai, _tarti,_g

l,agra,_ge muhipliers for the regular StLOOtiug method.
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Table 1: Converged Results

node ;,astern

3-2 guess 3-2 5-5 9-5 optimum.
P.I ' 0.852_ ' 0.8529 0.8541" 0.8544

!/(sec_' 30000 371.72 371.69 371.64 371.63
Aho 1.0 :8862E-6 -8,925E-6 -8.914E-6 .8939E-6
'_,0 l.O _ -4.148F-_4 -4.150F,-4 -4.129F_,-4 .4.125E'4
_'_,n 1.0 1.461E.2 8.702E-3 3.925F_3 2.554F.,-$
,_mQ 1.0 .2:004E-5 .2.017F,-5 -2.016g-5 .2.0_3E-5'
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The neighboring extremal feedback control law is de-

veloped for systems with a piecewise linear control for

the case where the optimal control is obtained by non-

linear programming techniques. To develop the control

perturbation for a given deviation from the nominal

path, the second variation is minimized subject to the
constraint that the final conditions be satisfied. This

process leads to a feedback relationship between the

control perturbation and the measured deviation from

the nominal state. A simple example, the lunar launch

problem, is used to demonstrate the validity of the guid-

ance law. For model errors on the order of 5%, the

results indicate that 5% errors occur in the final condi-

tions.

INTRODUCTION

In order to develop the neighboring optimal guidance

law for a dynamical system, it is first neeemary to ob-

tain the optimal control, and this can be a formidable

task. Currently, most trajectory optimization is ac-

complished by restricting the class of control functions

to some subclass, say piecewise linear functions (sub-

optimal control). Then, the control variables are pa-

rameters (nodes of piecewise linear function), and the

suboptimal control is found by applying nonlinear pro-

gramming methods. Hence, the subject of this paper

is the development of the neighboring suboptimal feed-

back control law, assuming that the suboptimal control

law is available.

Given the suboptimal control and a perturbation in

the state at some time, the neighboring suboptimal con-

trol is found by minimizing the increase is the perfor-

mance index subject to the constraint that the final

conditions must be satisfied. Since the first variation

vanishes, minimizing the increase in the performance

index is equivalent to minimizing the second variation.
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The constraint of satisfying the final conditions is ob-

tained through the use of transition matrices to the final

point. The above process leads to an analytical expres-

sion for the gains of the neighboring suboptimal feed-

back control law. Because of the simplicity of the con-

trol law, the suboptimal control rule can be applied to

the vehicles rather than sample and hold. This should

allow the sample time to be increased, if errors do not

grow too rapidly.

To test this guidance rule, it is applied to a simple

trajectory problem with various levels of modeling er-

rors. The results indicate that this guidance approach
has merit.

SUBOPTIMAL CONTROL PROBLEM

The optimal control problem [1] being considered

here is to find the control history u(t) which minimizes

the performance index

J = ¢(ts, zl)

subjectto the statedifferentialequations

(1)

=/(t, z, u), (2)

the prescribed initial conditions

to = to., zo = z0. , (3)

and the prescribed final conditions

¢(tj, zl) = 0. (4)

Here, this problem is converted into a suboptimal con-

trol problem [2] by assuming that the controls are piece-

wise linear, meaning that the unknowns become the

junction points (nodes) of the linear control segments

and the final time.

If a denotes the unknown parameter vector, that is,

aT = [f,t, Ull, U12 .... , u21, u22, ... ], the suboptimal

control problem is stated as follows:

Find the set of parameters a which minimizes the

performance index

J = r(a) (5)



subjectto theequalityconstraints

c(a) = o. (6)

The differential constraints are an integral part of defin-

ing the functions F and C and are written as

dx

d'T= x, a) (7)
r0=O, x0=z0,, 1"1=1

where r = t/S/ and z0, are the specified values of the
initial states.

It is assumed that this problem is solved numerically

by using a nonlinear programming code, and the next

step is to find the neighboring suboptimal feedback con-

trol law.

NEIGHBO!_ING SI3"BOPTIMAL CONT_0L

The solution of the suboptimal control problem gives

nominal control and state histories to be followed by the

vehicle. However, because of modelling errors, the ve-

hicle when using the nominal control deviates from the

nominal state. Hence, it is desired to find the neighbor-

ing suboptimal control perturbation which enables the

vehicle to operate in the neighborhood of the nominal

trajectory. The general philosophy is to find the con-

trol perturbation which minimizes the increase in the

performance index while satisfying the prescribed final

conditions.

Since the first variation vanishes along the subopti-

mal path, the increase in the performance index is the

second variation

AJ --½6aTG==6a (8)

where G = 4 + L,T_ is the augmented performance in-

dex and v is a constant Lagrange multiplier. Once the

suboptimal control has been obtained numerically, the

second derivative matrix G=. can be computed numer-

ically. The next step is to find the constraints on 6a

which guarantee satisfaction of the final conditions (4).

The variation of the state equation (7) leads to the

differential equation

d6z = g= + g= (9)6z 6a

which must be solved subject to the boundary condi-

tions

ro = to,, _zo = _zo. (10)
r! = 1, ¢=s 5x/ + ¢_s 6t/ = 0 .

Next, the solution of Eq. (9) is a.ssumed to have the

transition matrix form

6x "-46x I + 026a (11)

where

41 = I, ¢/= 0 (12)

to guarantee that _z I = 6= I. Then, substituting Eq.

(11) into Eq. (9) and equating like coefficients leads to

the following differential equations:

¢, = 0=4
(13)

which must be solved subject to the boundary condi-

tions (12). Once 4 and _ have been obtained, Eq. (11)

can be used.

To satisfy the final condition (10), Eq. (11) is rewrit-

ten as

ifz! = 4-z_z - 4-z_fa (14)

Then, a_uming $t/ = 0, Eq. (10) leads to

¢=,/4-I_z - ¢=,s4-1t6a = 0 . (15)

Applied to r0, this equation becomes

Cac¢@ol_0_a- O_14olSzo -" 0 (16)

and is the constraint on the control node perturbation

6a imposed by the final condition.

The lut step is to minimize AJ as given by Eq. (8)

with respect to $a subject to the constraint (16). Stan-

dard parameter optimization methods lead to

6a = K06z0 (17)

where the gain/to is given by

_ -1 T -T T

Ko - G,,= _o 4o ¢=,'a (18)
,_,_ 4-15 ,.-.,-z_,T 4- .,:r ,,-x¢=,,4_-z"kV/sl 0 O"-z aa 0 0 V)z! )

If.the sampling is performed continuously, the param-

eter perturbation becomes

5a =K6x (19)

where

K "- G -I_6Teb-I_/_T •

(?,,.; -,-,,,c?/,,,T,,,-, ¢.,,,-,.
These gains can be computed at several values of r

and stored in the onboard computer for interpolation

purposes.



Two difficultiesoccurin theuseof Eq. (19)asa
guidancelaw. First, * goesto zeroasr approaches

unity so that the computation of the gains becomes

indefinite (zero over zero). This has been handled in

the following application by computing the gains at r =

.950 and r = .975 and extrapolating them to r = 1.

The second problem is determining the value of r on

the perturbed path since the perturbed final time is

unknown. This has been accomplished iteratively by

guessing 6tl, computing r = t](t I + 6tl) , computing

6a and, hence, 6t], and repeating the computation until

the computed 6t! nearly equals the guessed lit I.

EXAMPLE - LUNAR LAUNCH. P_QBLEM

The lunar launch problem has been selected as a sim-

ple example to illustrate the application of this guidance

law. The optima/control problem is to find the thrust

inclination history 0(t) which minimizes the time to in-

sertion

J = _S (21)

subject to the differential constraints

,i = a¢oaO

ij = c*sinO- 9 ,

(22)

the prescribed initial conditions

to = zo = l/o = u0 = vo = 0, (23)

and the prescribed final conditions

yo = 50,000 ft, uo = 5,444 ft/sec, vo = 0 R/see.

(=4)
The quantities a and g are the constant thrust acceler-

ation and lunar acceleration of gravity whose nominal

values are a = 20.8 ft/sec 2 and g = 5.32 ft/sec 2.

Using five nodes for the suboptimal control calcula-

tion leads to

1! = 272.7 see,
0a = 26.09 deg,

02 = 20.68 deg

0__ = 15.34 deg,

04 = 9.061 deg,
05 = 3.113 deg

(25)

To test the guidance law, a 5% error is introduced

in c, which drives the vehicle away from the nominal.

Gains have been computed stored at each .025 in r.

Two implementations have been performed: one is to

C/

19.760

21.840

%(:hange State

ina

-5.0 y

U

V

+5.0 y
U

vt

% Deviation from ()primal

Sample- lnlegralc
llold Control

1.15 1.15

5.96 6.35

b.88 0.81

0.960.99

4.50 4.45

0.34 1.00"

Table 1: Results for 5% Modeling Error in Thrust

9 i% Change State

S mp,o-t in g Hold

5.05_t" -5.0 y 0.07

u 0.11

v 0.25

5:586 +5.0 y 0.10

" u 0.4:_

v '0.17

% Deviation from Optimal

Integrate
Control

0.08

0.26

0.01

0.09

0.4I

0.07

Table 2: Results for 5% Modeling Error in Gravity

use sample and hold and the other isto use the actual

linearcontrol. Resultsare shown for a 4 sec sample

time in Table 1. Note that a 5% error in a leads to

roughlya 5% errorinthe insertionconditions.

That the linearcontroldoes not do uniformly better

than sample and hdd is disappo/nting. It is felt that

the sample time could be increased substantially for the

linear control relative to sample and hold and still yield

good results. At any rate these are preliminary results

and further study is warranted.

Similar results have been developed for a 5% error in

g and are shown in Table 2. Qualitatively, these results
are similar to those in Table 1.

DISCUSSION AND CONCLUSIONS

The neighboring extremal feedback control law has

been developed for systems with a piecewise-linear con-

trol whose nominal control and trajectory have been

computed using nonlinear programming techniques.

Given a perturbation in the state, the neighboring ex-

trema/control perturbation is obtained by minimizing

the increase in the performance index relative to the

nominal value subject to the constraint that the final
conditions be satisfied. Numerical results for the lunar



launchproblemwith mismatchesin thethrustaccel-
erationandgravityaccelerationshowthat 5%moJe]
errorsleadto 5% final condition errors. Further study

of this guidance law seems warranted.
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Abstract

The neighboring extremal feedback control law is
developed for systems with a piecewise linear control

for the case where the optimal control is obtained by

nonlinear programming techniques. To develop the
control perturbation for a given deviation from the

nominal path, the second variation is minimised sub-

ject to the constraint that the final conditions be sat-

isfied. This process leads to s feedback relationship

between the control perturbation and the measured
deviation from the nominal gate.

In_

In order to develop the neighboring optimal guid-
ance law for a dynamical system, it is fult neees-

rout to obtain the optimal control. Currently, m_t

tr_ectory optimisation (see Ref. 1 for example) is

_¢omplisl_d by mstrictimg tim clam d cmataxd fumc-

tions to some subclass, say pleeewise lhtest functions

(suboptirmd control). Then, the ecsttrol variables ate

parameter. (node. of piecewi.e _ fuact/_), sad
the suboptimal control is found by applyisg mmlia-

ear programming methods, lleace, the subject of this

paper is the development of the neighboring subop-

timal feedback control law, smmming that the sub-
optimal control law is available.

Subo_msl Oml_rol Pr_km

The optimal control problem being considered here

is to find the control history u(r) which minimizes
the performance index

I= (:)

subject to the state differential equations

d=
d"_ - f(v',z,u,ty) , (2)

the prescribedinitialconditions

r0 = r0,, x0 = =0., (3)

l M. J. Thomp_um Regents Profemor

and the prescribed final conditions

= I, : o. (4)

Here, the time has been normalized by the final time,

that is, 1" = _/t/ where t/ is an unknown parame-
ter. This optimal control problem is converted into a

suboptimal control problem (parameter optimisation

problem) by assuming that controls are piecewise li_-

ear, meaning that the unknowns become the nodes

of the linear control segments and the final time.

If a denotes the unknown parameter" vector, that

is, a T = [tl, nl,, un, ... , u2,, u_, ... ], the di_er-

ential equations (2) and its boundary conditions can
be rewritten m

dz
d-_ft(r,z,a), _0=ro., "0='0., 9=I.

(s)
Given a, these equatimm can be integrated to obtma

z! = _l(a) so that ÷ = ÷[=l(a),fl] = F(a) sad
@ = @[gl(a),t/] = C(a) Then, the suboptimal ma-

trol problem is to find the parazneter vector a whidh

ndmim the perfornmaee imdex ] = F(a) nbjeet

to the ¢es_rtint C(a) = O.

To solve the suboptimal control problem an6-
]ytically, the augmented perforrmmce index J' --

F(a) + vTC(a) =AG(a, u) is formed. The first vari-

ation ¢onditiom are G, = 0 and C = 0 which de-
termine a and u. The second variation becomes

62J ' = 6aTG..6a> 0whereCs6a = 0, 6a can be

divided into dependent and independent parts, and

the second variation condition becomes the positive
definiteness of a matrix.

At this'point, it is smumed that the suboptimal

control problem is solved by using a nonlinear pn>.

grsmming code (see Ref. I, for example), and the

next step is to find the neighboring suboptimal con-
trol.

Neighboring Suboptimal Control

The solution of the suboptimal control problem

gives nominal control and state histories to be fol-

lowed by the vehicle. However, because of modelling

errors, the vehicle when using the nominal control



deviates from the nominal state. Hence, it is desired

to find the neighboring suboptimal control pertur-

bation which enables the vehicle to operate in the

neighborhood of the nominal trajectory. The gen-
eral philosophy is to find the control perturbation

which minimizes the increase in the performance in-

dex while satisfying the prescribed final conditions.

Since the first variation vanishes along the subop-

timal path, the increa_ in the performance index it
the second variation

AJ = ½ 8aTG,,_a (6)

subject to C,,6a = 0 which is imposed below. Once

the suboptimal control has been obtained, the second

derivative matrix Gto can be computed numerically.

The next step is to find the constraints on 6a which

guarantee satisfaction of the final conditions (4).
The variation of the state equation (5) leads to the

differential equation

d6z=g= +z+g. #a (7)

which mutt be solved subject to the boundary con-
ditiona

TO= I"0., 6Zo = 6zo,
r! = 1, _,_ 6z! + _,s 6tl = 0. (8)

Next, the tadutkm of Eq. (7) is assumed to have the
transition matrix form

6t = e6z! + 96a (9)

where

@! = I, 91 = 0 (10)

to guarantee that t_z! = 1StI. Then, substituting Eq.

(9) into gq. (7') and equating like coefficients leads
to the following differential equations:

4,' = g=@
(11)

9' = g=9 + go

which must be solved subject to the boundary con-

ditions (10). Once 4, and 9 have been obtained, Eq.

(9) can be used.

To satisfy the final condition (8), Eq. (9) is rewrit-
ten as

6zI = @-Z6z - @-t96a (12)

Then, for the c_se where _ts = 0, Eq. (8) leads to

_s_-t_z - tb=s_-lql6a = 0 • (13)

Applied to r0, this equation becomes

_zj q_otq'0_a - ¢%_o16zo : 0 (14)

.

.

and is the constraint on the control node perturba-

tion 6a imposed by the final condition.

The last step is to minimize AJ as given by Eq.

(fi) with respect to 6a subject to the constraint (14).

Standard parameter optimization methods lead to

6a = Ko6zo (15)

where the gain K0 is given by

f2-1_T&-T .I,T
KO "- "+'go =0 =0 "fx I "

(_=S@0190G_-lgT+-I.I,T _-l.j, a,-I0 0 _z$} Wa:$ TO •

Application

(16)

In Ref. 2, neighboring suboptimal control has been

applied in the same manner as neighboring optimal
control, that is, sampling is assumed to occur contin-

uously so that _'0 = r. However, in optimal control,

any part of an optimal trajectory to the final con-

strains manifold is an optimal trajectory, but this is

not the case in suboptimal control. In fact, there

ms0' not even be enough nodes between the sample

point and the final constraint maaifokl to satisfy the
boundary conditions.

alienate approad_ are being comideted.
First, additional nodes are placed near the final

comtndnt minded to make _i_iag sabap_imM

_ ne.r the end of the trajectory. Setmmd,

the mboptimal control is computed from each mode

to the final conmtraint mamifold, mad the gains (16)

are computed at each node. These gains are iiDearly
immlpOlated for the op_atioa of the vehicle. Uafar-

tunatdy, no results for either case are available at

the time of this writing.
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The neighboring optimal feedback control law is developed for sys-

tems with a piecewise linear control for the case where the optimal

control is obtained by nonlinear programming techniques. To de-

velop the control perturbation for a given deviation from the nomi-

nal path, the second variation is minimized subject to the constraint

that the final conditions be satisfied (neighboring suboptimal con-

trol). This process leads to a feedback relationship between the

control perturbation and the measured deviation from the nomi-

nal state. Neighboring suboptimal control is applied to the lunar

launch problem. Two approaches, single optimization and multiple

optimization, for calculating the gains are used, and the gains are

tested in a guidance simulation with a mismatch in the acceleration

of gravity. Both approaches give acceptable results, but multiple

optimization keeps the perturbed path closer to the nominal path.

INTRODUCTION

In order to develop the neighboring optimal guidance law for a dynamical system,

it is first necessary to obtain the optimal control. Currently, most trajectory opti-

mization (see Ref. 1, for example) is accomplished by restricting the class of control

functions to some subclass, say piecewise linear functions (suboptimal control). Then,

the control parameters are the nodes of a piecewise linear function, and the subop-

timal control is found by applying nonlinear programming methods. The subject of

this paper is neighboring optimal control for systems with piecewise linear controls,

or neighboring suboptimal control, and its application to vehicle guidance.

In Refs. 2 and 3, the neighboring suboptimal control problem is formulated as a

free final time problem and applied to the lunar launch problem. This formulation

requires an iteration at each sample point to find the normalized time. In this paper,

neighboring suboptimal control is formulated as a fixed final time problem and applicd

"M. J. Thompson Regents Professor
tGraduate Student, Major, USAF



to the lunar launch problem. While this problem is a minimum time problem, it can

be converted to a "fixed final time" problem by using the horizontal component of

velocity, whose final value is fixed, as the variable of integration.

Two approaches for computing the control gains are presented. In the single

optimization approach, the nominal suboptimal control is viewed as a sequence of

reduced-node suboptimal controls to the final constraint manifold. Hence, the quality

of the suboptimal control diminishes along the flight path. In the multiple optimiza-

tion approach, a new full-node suboptimal control is computed from each node of the

nominal suboptimal trajectory to the final constraint manifold. Hence, the quality of

the suboptimal control along the flight path is maintained.

After the suboptimal control problem and the neighboring suboptimal control

problem are summarized, the lunar launch problem is defined. Then, the single

optimization and multiple optimization approaches are used to compute the gains

which are, in turn, tested in a simulation with a mismatch in the acceleration of

gravity. Finally, some conclusions are reached about the use of these two approaches.

SUBOPTIMAL CONTROL PROBLEM

The fixed final time optimal control problem being considered here is to find the

control history u(r) which minimizes the performance index

J=¢(xl) (1)

subject to the state differential equations

dz

d--g= f(7.,x,u), (2)

the prescribed initial conditions

7"0 _" 7.0,, X0 --" X0s,

and the prescribed final conditions

Tj= 1, = 0.

Here, the time has been normalized by the final time, that is, r = tit I.

(3)

(4)

This op-

timal control problem is converted into a suboptimal control problem (parameter

optimization problem) by assuming that controls are piecewise linear, meaning that

the unknowns become the nodes of the linear control segments.

If a denotes the unknown parameter vector which for one control is written as

a T = [ux, u2,..., ur], the differential equation (2) and its boundary conditions can be
rewritten as

dz

d--;= 9(T,X,a) (5)

T0=T0,, Xo= Xo,, r I=1. (6)

2



Given a, these equations can be integrated to obtain x! = zl(a ) so that J =

¢[x.t(a)] = F(a) and d2[xl(a)] = C(a) Then, the suboptimal control problem is to

find the parameter vector a which minimizes the performance index J = F(a) sub-

ject to the constraint C(a) = O.

To solve the suboptimal control problem analytically, the augmented performance

index J' = F(a) + vTC(a) a= G(a,v) is formed. The first variation conditions are

Go = 0 and C = 0 which determine a and v. The second variation becomes 62J t =

6aTGa,,6a > 0 where C_,6a = O. 6a can be divided into dependent and independent

parts; the dependent parts .can be eliminated; and the second variation condition

becomes the positive definiteness of a matrix.

At this point, it is assumed that the suboptimal control problem is solved by using

a nonlinear programming code (see Ref. 1, for example), and the next step is to find

the neighboring suboptimal control.

NEIGHBORING SUBOPTIMAL CONTROL

The solution of the suboptimal control problem gives nominal control and state

histories to be followed by the vehicle. However, because of modeling errors, the

vehicle deviates from the nominal state. Hence, it is desired to find the neighboring

suboptimal control perturbation which enables the vehicle to operate in the neigh-

borhood of the nominal trajectory. The general philosophy is to find the control

perturbation which minimizes the increase in the performance index while satisfying

the prescribed final conditions.
Since the first variation vanishes along the suboptimal path, the increase in the

performance index is the second variation

AJ = 26aTG,,a6a (7)

where the second derivative matrix G_ can be computed numerically. The elements of

6a axe not independent but are constrained by the need to satisfy the final conditions

5¢ = exj6z I = O.

The variation of the state equation (5) leads to the differential equation

(8)

_z = g. 6x + g_ 6a (9)

which must be solved subject to the boundary conditions

r0=%,, 6x0 = 6x0, (10)
r 1 = 1, Vxj6x I = O.

Next, the solution of Eq. (9) is assumed to have the transition matrix form

(11)

3



where

¢I=1, .1=0 (12)

to guarantee that 6Xl = 6x 1. Then, substituting Eq. (11) into Eq. (9) and equating

like coefficients leads to the differential equations

• ' = g=,I,+ a,, (13)

which must be solved subject to the boundary conditions (12). Once (I) and @ have

been obtained, Eq. (11) can be used.

To satisfy the final condition (10), Eq. (11) is evaluated at r0 and rewritten as

(14)

Then, Eq. (10) leads to

- 16x0= 0 (15)

which is the constraint on the control node perturbation, _a, imposed by the final

condition.

The last step is to minimize AJ as given by Eq. (7) with respect to 6a subject to

the constraint (15). Standard parameter optimization methods lead to

_a = Ko_xo (16)

where the gain Ko is given by

Ko -1 T -T T -1= Ga= _0 40 Cx,(¢=lg#O VfoG22 _T¢-I'/'T _-1,/, (O-10 0 't_x 1] Wx! 0 • (17)

The computation of the gains can be checked by observing that K0 = Oa"#/tOxo

and using numerical differentiation. Given a suboptimal control and state history,

a perturbation in the state is introduced at some node, and the suboptimal control

from that perturbed state to the final constraint manifold is computed. The gains

are computed as Ko(i,j) = Aa(i)/Axo(j) where Aa is the change in the suboptimal

control caused by the change in the state.

The application of neighboring suboptimal control as a guidance law is dis_

in terms of the lunar launch problem which is defined in the next section.

4



LUNAR LAUNCH PROBLEM

The lunar launch problem is to insert a payload in circular lunar orbit over a
flat moon using a rocket with constant thrust acceleration.While this is a free final
time problem, it can be convertedto a "fixed final time" problem by choosingthe
horizontal componentof velocity as the variable of integration. With the variable
of integration normalizedas fi = (u - Uo)/(u I - Uo), the optimal control problem

is stated as follows: Find the thrust inclination history O(fi) which minimizes the

performance index

subject to the equations of motion

dt

dfi

dy

d_

dv

d_

J=t (is)

(u] -Uo) (19)
4_ COS 0

(20)
O_ COS

(uf - uo)(a sin 0 - g) (21)
a cos 0

and the boundary conditions

rio=O, to=O, Y0=O, vo=O, (22)

fi! = 1, Yl = 50,000 ft, v I = 0 ff/sec. (23)

In these equations, c_ = 20.8 ft/seJ is the thrust acceleration, g = 5.32 ft/seJ is the

acceleration of gravity, u/= 5444 ft/sec is the satellite speed, and u0 = 0 ft/sec.

For a piecewise linear control involving nine nodes, the nonlinear programming

code VF02AD gives the following suboptimal control in degrees:

01 = 26.01 02 = 23.31 0a = 20.51

04 = 17.65 0s = 14.86 08 = 11.90

0z = 8.98 Os = 6.01 09 = 3.03

(24)

Two approaches for applying neighboring suboptimal control are discussed: the

single optimization approach and the multiple optimization approach. Here, u0 = 0

for the single optimization approach or a node value for the multiple optimization

approach. In Ref. 4, neighboring suboptimal control results are presented for the cases

where there is a thrust acceleration or a gravity modeling error. Only the gravity

case is discussed here because it has the largest errors.

5



SINGLE OPTIMIZATION APPROACH

In this approach, the suboptimal control from node 1 to node 9 is considered to

be a sequence of reduced-node suboptimal controls. In other words, the suboptimal

control from node 1 to node 9 is a nine-node suboptimal control. From node 2 to

node 9, it is an eight-node suboptimal control; from node 3 to node 9, it is a seven-

node suboptimal control; and so on. At node 8, there are only two nodes available,

but these are enough to satisfy the boundary conditions (no optimization). Next, the

9 × 3 gain matrix, K0 in Eq. (17), is computed backward to each node and saved. The

gains associated with the state t are all zero because there is no condition imposed

on tf. Hence, the gain matrix, reduces to a 9 × 2 matrix, and the states are now

r = [ y0 Svo].
If the state perturbation occurs at node 8, only _as is of interest for a sample and

hold system. Hence, only the gains K0(8, 1) and K0(8, 2) are needed. Similarly, if the

state perturbation occurs at node 7, only K0(7, 1) and Ko(7, 2) are needed to compute

_aT, and so on. For a state perturbation between nodes, the gains are obtained by

linearly interpolating the gains at adjacent nodes. To have gains over the last or 8th

interval, the gains at nodes 7 and 8 are linearly extrapolated. In conclusion, only the

gains Ko(i, 1) and Ko(i, 2) where i -- I,..., 9 need to be stored in the flight computer.

This approach to neighboring extremal control is tested by introducing a _5%

error in the acceleration of gravity. In other words, the true value of g is taken to be

_5°_ different than the value being used in the computation of the gains. Gains are

computed and stored at every node or at every 0.125fi for 9 nodes (Table 1). The

sample points are assumed to occur at every integration step of the simulation. Here,

64 integration steps are used so that a sample point occurs every 0.015625fi. The

nominal states are obtained by numerical integration of the equations of motion sub-

ject to the suboptimal control (24). The true states are obtained by integrating the

equations of motion with the true acceleration of gravity subject to the neighboring

suboptimal control. At each sample point, the true states and nominal states are

differenced and the differences multiplied by the gains to obtain the control pertur-

bation. The control perturbation is assumed constant over the sample period, but

it is added to the piecewise-linear nominal control. Hence, the applied control varies

linearly over the sample period.

The deviations between the true states and the desired values at the final point are

presented in Table 2 along with the values which would have been obtained had the

nominal control (24) been applied open loop. On a relative basis, the improvement

is substantial. However, a statement about the absolute quality of the closed-loop

results cannot be made without some performance criteria, say for example, that the

vehicle has only so much AV to meet the desired final conditions precisely.

Time histories of the deviations are shown in Fig. 1. Throughout the trajectory,

the deviations are small, but they do not go to zero at the end. There are two

possible reasons for this: (a) the quality of the suboptimal trajectory as the vehicle

moves along its path and (b) the size of the last interval over which the gains are



Table 1

9-NODE SINGLE OPTIMIZATION GAINS

Node y Gain v Gain

1 -0.369E-5 -0.673E-3

2 -0.289E-5 -0.462E-3

3 -0.385E-5 -0.521E-3

4 -0.573E-5 -0.640E-3

5 -0.940E-5 -0.831E-3

6 -0.179E-4 -0.118E-2

7 -0.461E-4 -0.201E-2

8 -0.267E-3 -0.581E-2

9 -0.488E-3 -0.961E-2

obtained by extrapolation.

Both of these concerns can be addressed by increasing the number of nodes. Hence,

the computations have been repeated for 17 nodes. The final point deviations are

presented in Table 2 and show considerable improvement relative to those of 9 nodes.

However, the deviation histories do not change appreciably relative to Fig. 1.

Table 2

DEVIATION FROM DESIRED FINAL CONDITIONS

% Change

in_._gg
-5.0

+5.0

Closed Loop Closed Loop Closed Loop
9 Node 17 Node 9 Node

State Open Loop S!ngle Opt. Single Opt. Mult. Opt.

y! 9891.024 65.178 20.959 48.137

v! 72.540 -2.705 -1.977 -1.566

y! -9891.023 -63.989 -19.917 -47.891

v! -72.540 2.616 1.832 1.542
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Figure 1: 9-Node Single Optimization Deviation Histories

MULTIPLE OPTIMIZATION APPROACH

In an attempt to improve just the quality of the neighboring suboptimal control, a

9-node suboptimal control to the final constraint manifold is computed from each node

of the nominal trajectory (Fig. 2), and the gains are computed for each subtrajectory

by Eq. (17). These gains are presented in Table 3 and are seen to be larger than those

of the single optimization approach and uniformly increasing toward the final point.

The use of these gains in the simulation with a =1=5% mismatch in the acceleration of

gravity leads to the final results of Table 2. These closed-loop results are somewhat

better than those of the single optimization results for 9 nodes.

The time histories of the deviations are shown in Fig. 3. Overall these deviations

are smaller than those of single optimization. Again, the fact that the deviations do

not go to zero can probably be attributed to the extrapolation of the gains at nodes
7 and 8 over the last interval.

DISCUSSION AND CONCLUSIONS

Two approaches for computing the gains for the neighboring suboptimal control

guidance law have been tested in a simulation of a lunar launch vehicle: the single

optimization approach and the multiple optimization approach. In both approaches,
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Table 3

9-NODE MULTIPLE OPTIMIZATION GAINS

Node y Gain vGain
1 -0.369E-5 -0.673E-3

2 -0.494E-5 -0.780E-3

3 -0.688E-5 -0.921E-3

4 -0.101E-4 -0.112E-2

5 -0.161E-4 -0.141E-2

6 -0.290E-4 -0.190E-2

7 -0.661E-4 -0.288E-2

8 -0.267E-3 -0.581E-2

9 -0.468E-3 -0.874E-2
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Figure 3: 9-Node Multiple Optimization Deviation Histories

a suboptimal control and trajectory with evenly spaced nodes is used as a base, and

the number of gains which must be stored is very small.

For single optimization, that part of the suboptimal trajectory from a generic

node to the final constraint manifold is thought of as a reduced-node suboptimal

trajectory. Hence, the control becomes less optimal (fewer nodes) toward the end of

the trajectory and eventually runs out of nodes for satisfying the boundary conditions.

However, the gains generated by this approach produce good results in a guidance

simulation. The final point results can be improved by increasing the number of
nodes.

The multiple optimization approach is to find a full-node suboptimal control from

each node of the nominal path to the final constraint manifold. Gains generated from

these subtrajectories are larger than those of the single optimization approach, are

uniformly increasing toward the final point, and produce better guidance results, that

is, the deviations are smaller along the path.

From these results, it is apparent that the single optimization approach can satis-

factorily meet the final conditions. On the other hand, if the perturbed trajectory is

to lie close to the nominal trajectory, the quality of the optimization along the path

must be improved. Multiple optimization does this, but the amount of computation

is considerably more than that of single optimization.
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