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Robust Neighboring Optimal Guidance
for the Advanced Launch System

David G. Hull*

In recent years, optimization has become an engineering tool through
the availability of numerous successful nonlinear programming codes.
Optimal control problems are converted into parameter optimization
(nonlinear programming) problems by assuming the control to be
piecewise linear, making the unknowns the nodes or junction points of the
linear control segments. Once the optimal piecewise linear control
(suboptimal) control is known, a guidance law for operating near the
suboptimal path is the neighboring optimal piecewise linear control
(neighboring suboptimal control). Research conducted under this grant has
been directed toward the investigation of neighboring suboptimal control
as a guidance scheme for an advanced launch system. The list of
references is a list of papers presented at technical meetings; these papers

are included at the end of the report.

The first step is to obtain the optimal piecewise linear control for the
advanced launch system, upon which the neighboring optimal piecewise
linear control is based. These results have been obtained by using a
nonlinear programming code based on recursive quadratic programming
with numerical partial derivatives and are reported in Ref. 1. In an effort
to improve the results obtained by nonlinear programming, the suboptimal
control problem is solved by the shooting method which requires
analytical derivatives (Ref. 2). By guessing the control history, the

shooting method is completely desensitized to the guesses of the initial
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Lagrange multipliers. Ref. 2 shows that the optimal piecewise linear control

can be a good approximation of the actual optimal control.

Once the suboptimal control has been obtained, the next step is to
develop the neighboring suboptimal control for guidance about the
suboptimal path. Since this is a completely new research area, a simpler
launch model, the lunar launch problem, has been used to determine the

feasibility of this guidance strategy.

First results are reported in Ref. 3. Given a perturbation in the state
from the state corresponding to the suboptimal control, the control
parameter perturbations are obtained by minimizing the increase in the
performance index (second variation) subject to the constraint that the
final conditions are satisfied. This process leads to a set of gains which
multiply the state perturbations to get the control parameter
perturbations. At this point, time is the running variable, and while the
results are satisfactory, they give some indication that the method has not

yet been applied properly.

Refs. 4 and 5 are further steps to clarify the fundamental issues of
this guidance approach. In Ref. 5, the problem is reduqed to a “fixed final
time” problem by using the horizontal component of velocity as the
variable of integration. These results indicate that neighboring suboptimal

control is now being formulated and applied correctly.

Continuing work is associated with using the time as the running

variable since this is the way most guidance systems operate.

Finally, a list of master’s degrees awarded during this research effort

is given in Table 1.
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Abstract

The maximum-final-mass trajectory of a proposed
configuration of the Advanced Launch System is pre-
sented. A model for the two-stage rocket is given; the
optimal control problem is formulated as a parame-
ter optimization problem; and the optimal trajectory
is computed using a nonlinear programming code called
VF02AD. Numerical results are presented for the con-
trols (angle of attack and velocity roll angle) and the
states. After the initial rotation, the angle of attack goes
to a positive value to keep the trajectory as high as pos-
sible, returns to near zero to pass through the transonic
regime and satisfy the dynamic pressure constraint, re-
turns to a psotive value to keep the trajectory high and
to take advantage of minimum drag at positive angle of
attack due to aerodynamic shading of the booster, and
then rolls off to negative values to satisfy the constraints.
Because the engines cannot be throttled, the maximum
dynamic pressure occurs at a single point; there is no
maximum dynamic pressure subarc.

To test approximations for obtaining analytical solu-
tions for guidance, two additional optimal trajectories
are computed: one using untrimmed aerodynamics and
one using no atmospheric effects except for the dynamic
pressure constraint. It is concluded that untrimmed
aerodynamics has a negligible effect on the optimal tra-
jectory and that approximate optimal controls should
be able to be obtained by treating atmospheric effects
as perturbations.

List of Symbols

Cy lift coeflicient
Cp drag coefficient
Cm pitching moment coefficient
D aerodynamic drag (Ib)
g local gravitational acceleration (ft/sec?)
h altitude (ft)
i orbit inclination (rad)
I,, vacuum specific impulse (sec)
J performance index
| aerodynamic reference length (ft)
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distance from exit plane to vehicle cg (ft)

aerodynamic lift (Ib)

vehicle mass (slugs)

aerodynamic pitching moment (ft 1b)

Mach number
penalty function

atmospheric pressure (1b/ft?)
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dynamic pressure (1b/ft?)
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aerodynamic reference area (ft%)
thrust (Ib)

vacuum thrust (Ib)

staging time (sec)

velocity (ft/sec)

angle of attack (rad)

flight path angle (rad)

thrust gimbal angle (rad)
pitch angle (rad)

longitude (rad)

velocity roll angle (rad)
atmospheric density (slug/ft?)
latitude (rad)

normalized time
rotational velocity of earth (rad/sec)

heading angle (rad)
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Subscripts

b body axes

cg center of gravity

exit
final
inertial
initial
sea-level
wind axes
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1. Introduction

A program is under way to develope an unmanned,
all-weather, launch system for placing medium to large
payloads (~ 120,000 Ib) into low-earth orbit. A prospec-
tive design for this Advanced Launch System (ALS) is
shown in Fig.1 to be composed of a core vehicle and
a booster. Both the booster and the core are ignited
at launch, and staging occurs when all the booster pro-



pellant is consumed. Payload mass can be increased by
adding another booster.

Part of the design process is to iterate the vehicle de-
sign and trajectory design until a reasonable combina-
tion is achieved. This paper is concerned solely with the
optimal trajectory design of the proposed configuration.
The objective is to find the trajectory which maximizes
the final mass (since the engines burn throughout the
trajectory, this is also a minimum final time problem).
Any remaining propellant can be considered for conver-
sion to payload or a decrease in launch weight. The
physical model is that of flight over a rotating, spher-
ical earth with an exponential atmosphere. Launched
vertically from the surface of the earth, the payload is
to be placed into perigee of an 80nm by 150nm transfer
orbit. Because of structural considerations, there is a
limit on the amount of dynamic pressure the vehicle can
withstand.

This study has had several goals: (a) to determine the
maximum-final-mass trajectory of the proposed ALS,
(b) to generate initial Lagrange multipliers for a shooting
code to investigate neighboring extremal guidance, and
(¢) to determine if atmospheric effects (pressure thrust
and aerodynamics) can be considered as a perturbation
to vacuum thrust and gravity for guidance law devel-
opment. While only (a) and (c) are reported here, (b)
requires the use of an exponential atmosphere. Hence,
the dynamic pressure limit based on a standard atmo-
sphere has been lowered to have the same effect in an
exponential atmosphere.

In Section 2, a model is presented for the proposed
ALS configuration. Then, the optimal control problem
is formulated in Section 3 and converted into a param-
eter optimization problem in Section 4. This is done
for relative ease in obtaining an optimal trajectory. Nu-
merical results are presented in Section 5 in the form
of optimal controls, states, and dynamic pressure. Also
contained in Section 5 are two additional optimal trajec-
tories based on untrimmed aerodynamics and neglected

atmospheric effects. Finally, conclusions are presented
in Section 6.

II. Physical Model

In this section, a physical model for the Advanced
Launch System (ALS) is defined. It includes the equa-
tions of motion for flight over a rotating, spherical earth
with an exponential atmosphere and the mass, propul-
sion, and aerodynamic properties of the vehicle.

Equations of Motion

Since sideslip causes drag, the vehicle is assumed to fly
at zero sideslip angle, so that only the angle of attack
gives the orientation of the vehicle relative to the free
stream. The direction of the lift vector is then controlled

through the bank angle or, more specifically, through the
velocity roll angle.

A three-degree-of-freedom model for vehicle motion
can be obtained from a six-degree-of-freedom model by
one of two aerodynamic approximations: untrimmed
aerodynamics or trimmed aerodynamics. For a rocket,
untrimmed aerodynamics is equivalent to setting the
thrust gimbal angle to zero and ignoring the aerody-
namic pitching moment. On the other hand, with
trimmed aerodynamics, it is assumed that the pitch rate
is zero (pitching moment equals zero) so that the gim-
bal angle can be determined as a function of the angle
of attack.

In view of the above comments, the three-degree-of-
freedom equations of motion relative to the earth are
given by (Ref. 3)

i = Vcosycosy

rcost

b= Vcosysiny
r

h = Vsiny

= %(Tcos(a + 6) — D — mgsiny)

+ rw3cost(cosTsiny — sinTcosysiny)

¥= -ml—V[(Ta:'n(a + 6) + L)cosp — mgcos) (1)
3
+ Vc:s‘y + 2wcosrcosy + Lw‘-,—cosr(cosrcos'y
+ sinTsinvysiny)
: 1 . .
Y= - mVeory (Tsin(a +8) + L)smp
- gtanrcos'/coad; + 2w(cosrtanysiny — sinT)
rw?
- cosTsinTcosy
87
, 1
m= — I'Pg. Tvu

In these equations, ) is the longitude, 7 is the latitude, A
is the altitude above mean sea level, V is the velocity, ¥
is the flight path angle, ¢ is the heading angle, m is the
mass, r = r, + h is the distance from the center of the
earth to the vehicle center of gravity, w is the angular
velocity of the eath, D is the drag, L is the lift, T is the
thrust, I,, is the specific impulse, § is the gimbal angle
of the thrust vector, a is the angle of attack, and 4 is the
velocity roll angle. With regard to signs, a positive roll
angle generates a negative heading toward the south.

For trimmed aerodynamics, the pitching moment,
which is the sum of the aerodynamic pitching moment
and the thrust pitching moment, is set equal to zero, and
the resulting expression solved for the thrust gimbal an-
gle. With reference to Fig. 1 and by assuming that § is
small, this process leads to

M
=-7 (2)



Figure 1: Force and Moment Nomenclature

where M, is the aerodynamic pitching moment ant I,
is the distance from the center of gravity to the exit
plane of the engines. Because § is dependent on the
aerodynamic pitching moment and the moment is de-
pendent on the pitching moment coefficient, it results
that 6 is linear in o with the coefficients varying with
time. Aerodynamics is discussed in further detail later
in this section.

Egs. (1) have two singularities: V =0 in the ¥ and
the ¥ equations and v = F in the ¢ equation. To re-
move the V singularity and to clear the launch tower,
the vehicle is flown vertically for 3 sec with the angle of
attack and the bank angle being chosen so that y = 0
and ¢ = 0. To remove the 7 singularity, the vehicle is
pitched over at constant heading (¢ = 0) for 1.0 sec at
a constant negative pitch rate § whose optimal value is
determined. Since § = 7 + a, the angle of attack during
pitch-over is given by

a=%-7+o'(t-3) : (3)

Finally, the bank angle is chosen to make ¢ = 0. With
a flat earth model, p = 0.

Earth

The earth is taken to be a rotating, spherical body
whose surface is described by the mean sea-level radius
r, and whose gravitational acceleration varies with alti-
tude according to the inverse-square law

g=0.(2) (4)

where g,r? represents the earth’s gravitational parame-
ter. Sea-level gravitational acceleration g,, r,, and the
rotational velocity of earth w are known constants given
as

f
r, = 2.09256725E+7 ft , g, = 32.174 —-t-i
sec

w = 72921158E-5 23 (5)
8ec

Atmosphere

The atmosphere is represented by the exponential
functions

p —h p —h

~ =erp(—), — =exp(— 6

o "3 o, S w) (6)
where the scale-height constants are given by

A = 23,800 ft , A2 = 23,200 ft (7)

and the sea-level values of the density and pressure are

Ib
ps = 002377 9-'{%%5!  P=2,11624 . (8)

Finally, the speed of sound is given by

o= \/ig (9)

where ¥ = 1.4 is the ratio of specific heats of air.
Mass Characteristics

The ALS configuration consists of a core vehicle as
depicted in Fig.1. The take-off mass of the ALS con-
sists of the inert vehicle mass, the propellant mass, pay-
load mass, payload margin mass, and the payload fairing
mass (Table 1). -

Table 1: Mass Characteristics

Vehicle | Vehicle Component | Take-off Mass
(slugs)
Core Inert Mass 5,474.29
Propellant 45,974.38
Payload 3,729.71
Payload Margin 372.97
Payload Fairing 1,215.89
Total Core 56,767.26
Booster Inert Mass 6,740.85
Propellant 45,066.82
Total Booster 51,807.67
Core + | Total Take-off Mass 108,574.93
Booster

The center of gravity is located relative to a coordinate
system whose origin is at the tip of the core vehicle,
whose z axis is down the longitudinal axis, and whose
y axis is toward the booster. For the first stage, the
vehicle center of gravity is assumed to have coordinates

Teg = 165451t , yeo = 10.36 — .0388¢ ft (10)
so that I, is constant and has the value

Iy =1-z2,=110811t (1)



where | = 276.26 ft is the length of the core vehicle.
Actually, z., varies slightly but this variation has been
neglected. For the second stage, untrimmed aerodynam-
ics is used so the cg position is not needed.

Propulsion

The ALS is powered by ten liquid hydrogen/liquid
oxygen low cost rocket engines (LCE): seven power the
booster and three power the core. All engines are ig-
nited at launch; staging occurs when the booster fuel is
depleted; and the core engines burn until insertion.

Propulsion characteristics of interest are the thrust
T, vacuum thrust Tyqc, and the specific impulse Lp(see
Eqs.1). If the exit pressure is conservatively approxi-
mated as p, = 0, the thrust of a single engine is modeled
as

T' = Tya' — PA (12)

where the prime denotes one engine, p is the atmospheric
pressure at the altitude of the rocket, and A, is the exit
area. Date relevant to one LCE are as follows:

Tyae' = 580,110.0 1b
A, =40.381 ft2 (13)
I,p' = 430.0 sec .

For the complete vehicle,
T = kT’ s I,p = I.p' y Tvae = kTvac' (14)

where k£ = 10 before staging and k = 3 after staging.
Specific impulse is like specific propellant consumption
(weight flow rate of propellant per pound of thrust);
hence, it has the same value regardless of the number
of engines operating.

Aerodynamics

The drag, lift, and pitching moment are related to
their respective coefficients by the standard equations

D=¢SCp, L=¢SCrL Ma= gSyiCm (15)

where ¢ = }pV? is the dynamic pressure, S =
1413.71 ft2 is the cross-sectional area of the combined
vehicle (booster + core), and [ is the length of the core.
While the aerodynamic coefficients are needed at and
about the center of gravity (cg), the aerodynamic data
has been provided at and about the launch cg. Although
the drag and lift transfer directly, the moment changes
with cg position. Therefore, the aerodynamic data at
the cg must be related to the launch ¢g.

The aerodynamic data are preliminary estimates as-
sociated with the development of the six-degreee-of-
freedom simulation presented in Ref. 4. These data are
provided in tabular form (Tables 2 through 6) consistent
with the functional relations

Cp= CD(M,O) ’CL = CL(M:a) s

Cm=Cm(M,a) (16)

where M denotes the Mach number and the bar indi-
cates that the moment is about a fixed point (launch
cg). About the actual center of gravity, the moment is
given by

Dycg - 10.36

Cn=Cm— T (17)

since z., is assumed not to change.

While the aerodynamic data could have been used in
tabular form with linear interpolation to read the tables,
the approach taken is to assume polynomials in a with
Mach-number-dependent coefficients. For the first stage,
the coefficients are written as

Cp = Cp,(M) +Cp_,(M)a® + Cp_,(M)a®
CL =Cr (M)a (18)
Crm = Cimo(M) + Cm.(M)a
where the Mach-number-dependent terms have been ob-
tained from cubic-spline curve fits of the tabular data.
After staging, the flow regime is hypersonic and the aero-
dynamic force coefficients are modeled as
Cp=Cp,+Cp.a+ Cp.,a2
Cr = Cr.a+Cr 0 (19)
where the coefficients of o are constants. Also, pitching
moments are assumed to be negligible after staging, that
is, untrimmed aerodynamics are used (6 = 0).
A peculiarity of the aerodynamics of the combined
vehicle at supersonic and hypersonic speeds is that the
drag coefficient has a minimum at a positive angle of

attack. This is caused by the aerodynamic shading of
the booster by the flow field of the core.

III. The Optimal Control Problem

Formally the optimal control problem considered here
is to find the control history u(t) which minimizes a per-
formance index of the form

J = ®(zg) (20)
subject to the differential constraints
z= f(z,u), (21)
the prescribed initial conditions
to=to, , To = Zo, » (22)
the prescribed final conditions
¥(zy)=0, (23)
and a state-variable inequality constraint

S(z) <0 . (24)



Each of these quantities is discussed below.
State Variables and Control Varables

The state variables are zT = [A 7 A V v ¢ m] while
the control variables are u7 = [a p).

Performance Index

It is desired to maximize the final mass. Hence, the
performance index is taken to be

&= — b (25)

Myey

where the minus sign is included because the perfor-
mance index is actually minimized and where m,.; is
the sum of the payload mass, the payload margin mass,
and the payload fairing mass. A performance index of
& = —1.0 means that the reference mass is inserted into
orbit with no extra fuel.

Differential Constraints

The differential constraints are the equations of mo-
tion (Eqgs.1) completely expressed in terms of the state
variables and the control variables.

Prescribed Initial Conditions

For the trajectory design problem, the initial condi-
tions are taken to be

t, = Osec ,A, = —80.54deg ,7, = 28.5deg
h, = 0ft V—O—ﬁ— =90.0d 26
o = 1Yo =V o yYo = 80.0deg (26)
Yo = 0.0deg ,m, = 108, 574.93 slugs

During the vertical rise segment, the heading angle is
undefined, so the initial condition on 4 is actually the
heading angle during the pitch-over segment.

Prescribed Final Conditions

The Advanced Launch System is being designed to
place a nominal payload at perigee of an 80nm by 150nm
transfer orbit of 28.5 deg inclination. As a consequence,
the equality constraint residuals are

¥, = hy —486,080ft , ¥, = V; —25,776.9ﬁ-
! sec

W3 =1y, ¥4 = cosiy —cos(28.5deg) (27)

where the inertial velocity and the inclination are related
to the relative states as follows (Ref.5 and 6)

Vi = [V + 2Vrweosycospeost + (rweost)?]*  (28)

, cosT(Vcosycosy + rweosT)
cost =

[V2cos?y + 2V rwcosycosypcost + (rweosT)2]}

State-Variable Inequality Constraint

Based on structural considerations, the ALS must
not exceed a maximum dynamic pressure of g =
650 1b/ft?. Therefore, the state-variable inequality con-
straint residue S is

S= %pw - 650 Ib/ft? . (29)

Actually, in a standard atmosphere, the limit is ¢gmar =
850 Ib/ft?. The value of 650 Ib/ft? is chosen because the
value of p is approximately 20% smaller in the exponen-
tial atmosphere than the standard atmosphere around
the maximum dynamic pressure portion of the trajec-
tory.

IV. The Suboptimal Control Problem

The optimal control problem is converted to a param-
eter optimization problem (suboptimal control problem)
as follow: (a) the time is normalized by introducing the
transformation 7 = ;‘-’-; (b) the control u(t) is replaced
by a set of nodal points which is linearly interpolated,
and (c) the state-variable inequality constraint is con-
verted to a point constraint by using a penalty function.

Because of the time transformation, the boundary val-
ues of r are given by

4
TO=0aTﬂ=i;'|Tl=ry
r, = 153'1'54 =1 (30)

where t, = 3 sec is the time at the beginning of pitch-
over and t; = 4 sec is the time when three-dimensional
flight begins. Staging occurs when all of the booster
propellant is consumed; hence, t, = 153.54 sec.

Figure 2 shows the arrangement of nodal points in
each stage. Nine nodes are used for the control during
the first stage, and five for the control during the second
stage. Even though the duration of the first stage is
shorter than that of the second, there is more activity in
a during the first stage, making more nodes desireable.
The nodes are equally spaced in each stage so that the
node times are

Ts— T

n=n+ (i-1),i=1—-9

1—'. +
REnt—i-10),i=10—14 . (31)
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Figure 2: Example Control History

Note that there are two control nodes at the stage time.
This has been done in order to find the true suboptimal
control.

The dynamic pressure constraint is converted to a pa-
rameter inequality constraint by introducing the penalty
function

t ,
P=— [ min?[1-=2-),01dt>0 (32
te dmas

which accumulates value when ¢ > gmas- The constraint
becomes

P20 . (33)

To compute Py, the penalty function is differentiated to
form

P = —min?[(1- ﬁ:),o] (34)

where
P,=0. (35)

In all, the nonlinear programming problem involves 30
parameters, that is, the parameter vector is given by

X = [é y Q1 yere s 014y B yeee s P14 fj] (36)

where 6 is the pitch rate during the pitch-over, ax, sk
are the angle of attack and the bank angle nodes, and
t; is the final time.

If values of the parameters (36) are known, the differ-
ential equations (1) and (34) can be integrated through
the mission to determine the states and P at the fi-
nal time. Then, the performance index (25), the orbital
insertion equality constraint residuals (27), and the dy-
namic pressure inequality constraint (29) can be com-
puted. It follows that the performance index and the
constraints are functions of the parameters (36) such
that the nonlinear programming problem can be ex-
pressed as follows:

Find the set of parameters X which minimizes the per-

formance index X
7= -mX) (37)

Mypey
subject to the equality constraints

Vi, (X
9 = !( ) -1=0
e
Ci=v(X)=0 (38)
= osuX) g
costy,
and the inequality constraint
Cs=Py(X)20 . (39)

Derivatives required by the nonlinear programming al-
gorithm are computed by central differences.

V. Numerical Results

The optimal trajectory has been computed using a
nonlinear programming code known as VF02AD which is
based on quadratic programming. Optimal contro] his-
tories are presented in Fig.3, while the resulting states
are shown in Figs.4 through 7. The magnitude of the
performance index is 103.94% where 100% = 171,120
Ib. This means that an additional 6,742 1b of payload
can be placed in orbit with this vehicle by using the op-
timal trajectory. The vehicle is inserted into orbit at
t; = 363.8 sec and the optimal value of the pitch rate
during the 1.0 sec pitch-over is -.02005 rad/sec.

Shown in Fig.8 is the dynamic pressure. It is seen
that the maximum dynamic pressure occurs at a single
point and not along a8 ¢mas subarc. This is due to the
no-throttling design of the vehicle and the fact that the
aerodynamic forces needed to fly along ¢ = gma= cannot
be achieved. Optimal trajectories with lower values of
Gmas have been calculated, and the results are the same.

It is difficult to completely determine the meanings of
the optimal control histories because performance-index
minimization and constraint satisfaction are going on
all through the trajectory. For angle of attack, it is seen
from Fig. 3 that the vehicle initially goes to positive a to
achieve altitude and decrease g. Then, the dip in a from
¢ = 40 to 60 sec allows the vehicle to pass through the
transonic regime efficiently (Mach 1 occurs at ¢t = 50 sec)
and to satisfy the dynamic pressure inequality constraint
(gmaz occurs at t = 70 sec). Next, the vehicle returns to
positive a to get low drag and to decrease the magnitude
of 4. Staging occurs around Mach 8 and the roll off in «
from positive to negative values during the second stage
helps pull the trajectory down to meet the final condi-
tions. For the velocity roll angle, the nonzero values at
the beginning of the trajectory seem to be caused by the
rotational effects of earth where the vehicle wants to fly
at constant latitude throughout most of the first stage.
Changes in yu near the end of the trajectory help cause
constraint satisfaction, particularly in the orbit inclina-
tion.

Additional optimal trajectories have been computed
with the intent of determining what kinds of approxi-
mations can be made in order to obtain approximate



analytical solutions for guidance purposes. First, the ef-
fect of using untrimmed aerodynamics (6 = 0) rather
than trimmed aerodynamics is siiown in Fig.9 and 10 to
change only slightly the optimal controls and to cause a
relative change in the performance index of 0.2% (376.5
Ib). Hence, untrimmed aerodynamics is a reasonable
approximation. Second, the question of whether or not
atmospheric effects can be considered a perturbation is
considered. This means that the pressure term in the
thrust and the aerodynamics are neglected; however, the
dynamic pressure constraint is maintained becauseitis a
structural constraint. The optimal controls for this case
are shown in Fig. 11 and 12 and lead to a relative increase
in the performance index of 16% (27,379 Ib). Trajectory
profiles for the atmosphere and no-atmosphere cases are
shown in Fig. 13. The optimal control which results
from the no-atmosphere case is reasonably close to that
of the atmosphere case and has the same general trend.
This seems to indicate that atmospheric effects can be
treated as a perturbation. '

V1. Discussion and Conclusions

The maximum-final-mass trajectory has been com-
puted for a two-stage rocket representing the Advanced
Launch System and operating over a rotating, spherical
earth with an exponential atmosphere. The problem is
converted into a parameter optimization problem by re-
placing the control histories by node points and using
straight-line interpolation to form functions. Then, a
nonlinear programming code known as VF02AD is used
to perform the optimization. Optimal trajectories have
been calculated for three cases: (a) trimmed aerody-
namics, (b) untrimmed aerodynamics, and (c) no atmo-
sphere. With the assumption of trimmed aerodynamics,
the aerodynamic model is as accurate as possible for a
three-degree-of-freedom analysis. The optimal trajec-
tory is characterized by positive angles of attack over
most of the path with a prominant decrease during pas-
sage through maximum dynamic pressure. The maxi-
mum dynamic pressure occurs at a single point rather

than over a subarc because the engines cannot be throt-
tled.

To obtain analytical solutions for guidance purposes,
approximations must be introduced. The effect of re-
placing trimmed aerodynamics by untrimmed aerody-
namics has been examined, and it is concluded that
untrimmed aerodynamics gives good results.

Next, the effect of neglecting atmospheric effects
(pressure thrust and aerodynamics) has been investi-
gated. With the exception of the transonic and max-
imum dynamic pressure portion of the trajectory, it is
clear that atmospheric effects can be considered as per-
turbations to the trajectory generated by vacuum thrust
and gravity. During the passage through the transonic
and maximum dynamic pressure part of the trajectory,

there is a difference of 14 deg between the atmosphere
and no-atmosphere solutions. Since this region consti-
tutes less than fifteen percent of the whole trajectory,
treating atmospheric effects as perturbations could yield
satisfactory results.
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Subsonic Data
Angle of Attack (deg)
M £0.0 +2.0 +4.0 +6.0 +8.0 +10.0
0.0 0. 0.088 1775 0.2663 0.355 0.4438
0.2 0.0 0.08876 0.1775 0.2663 0.355 0.4438
0.4 0.0 0.08876 0.1775 0.2663  0.355 0.4438
0.6 0.0 0.08876 0.1775 0.2663 0.355 0.4438
0.8 0.0 0.08876 0.1775 0.2683 0.355 0.4438
1.0 0.0 008720 0.1744 0.2616 0.3488 0.4360
Supersonic/Hypersonic Data '
Angle of Attack (deg)

M 0.0 2.0 4.0 6.0 8.0 10.0

1.2 0.0 0.0862 0.1724 0.2586 0.3448 0.431

1.5 0.0 0.086 0.171 0.260 0.351 0.431

20 00 0.090 0.175 0.262 0.354 0.435

2.5 0.0 0.098  0.181 0.268 0.370 0.460

30 00 0100 0192 0278 038  0.490

3.5 0.0 0.102 0.200 0.290 0.401 0.510

40 0.0 0.104 0.202 0.291 0.405 0.510

50 0.0 0.104 0.206 0.298 0.410 0.509

6.0 0.0 0.103 0.203 0.300 0.408 0.508

70 0.0 0.100 0.195 0.298 0.400 0.502

80 00 0095 0.185 0.290 0.395 0.500

Angle of Attack (deg)

M -2.0 -4.0 -6.0 -8.0 -10.0

1.2 -0.084 -0.170 -0.260 -0.350 -0.431

1.5 -0.086 -0.171 -0.260 -0.351 -0.431

2.0 -0.090 -0175 -0.262 -0.354 -0.435

2.5 -0.098 -0.181 -0.268 -0.370 -0.460

3.0 -0.100 -0.192 -0.278 -0.385 -0.480

3.5 -0.120 -0.200 -0.290 -0.401 -0.510

40 -0.120 -0.215 -0.310 -0.420 -0.520

5.0 -0.120 -0.225 -0.327 -0.442 -0.542

6.0 -0.125 -0.225 -0.334 -0.451 -0.567

70 -0.115 -0.222 -0.332 -0.452 -0.580

8.0 -0.110 -0.218 .0.325 -0.450 -0.565



Table 3. Drag Coefficient (corc + booster)

Subsonic Data

Angle of Attack (deg)

M +0.0 +2.0 +4.0 +6.0 +8.0 +10.0
00 0.1870 0.1904 0.2024 0.2254 0.262 0.314
02 0.1872 0.1906 0.2026 0.2256 0.2622 0.3142
0.4 0.2062 0.2006 0.2216 0.2446 0.2812 0.3340
06 0.2599 0.2633 0.2753 0.2983 0.3349 0.3877
0.8 0.3480 0.3514 0.3634 0.3864 0.4230 0.4758
1.0 0.7800 0.7834 0.7954 0.8184 0.8550 0.9078
Supersonic/Hypersonic Data
Angle of Attack (deg)

M 0.0 2.0 4.0 6.0 8.0 10.0

1.2 0.800 0.805 0.815 0.838 0.875 0.928

1.5 0.740 0.703 0.645 0.640 0.635 0.635

20 0.672 0656 0555 0.525 0525 0525

2.5 0.648 0628 0.512 0.468 0465 0.455

30 0637 0608 0488 0448 0431 0418

35 0630 0596 0470 0.425 0.406- 0.392

40 0.628 0587 0.460 0410 0385 0.368

50 0.620 0572 0.448 0392 0355 0.352

60 0.617 0570 0.446 0382 0348 0.348

70 0615 0567 0445 0378 0340 0.340

80 0.615 0.565 0.445 0372 0340 0338

Angle of Attack (deg)

M -2.0 -4.0 -6.0 -8.0 -10.0

1.2 0803 0815 0838 0.875 0928

1.5 0.745 0.750 0.773 0.800 0.871

20 0.690 0.708 0.731 0.768 0.822

25 0.665 0680 0.708 0.745 0.790

30 0648 0651 0688 0730 0771

3.5 0.640 0650 0675 0.716 0.757

40 0631 0641 0665 0.7068 0.745

50 0625 0635 0651 0692 0731

60 0610 0625 0.648 0688 0.727

70 0.610 0620 0640 0.685 0.730

80 0610 0.620 0640 0684 0.725

Table 4. Pitching Moment Coefficient (core +

booster)

Angle of Attack (deg)

M 0.0 2.0 4.0 6.0 8.0 10.0

00 00035 00271 00508 00744 0.0981 01217
0.2 00035 00271 00508 00744 0.0981 0.1217
0.4 00040 00276 00513 0.0745 0.0986 0.1222
0.6 0.0052 00288 0.0538 0.0757 0.0998 0.1234
0.8 0.0072 0.0308 0.0558 0.0777 0.1018 0.1254
1.0 0.020 0.046 0.072 0.098 0.124 0.150
1.2 0.033 0.062 0.093 0.123 0.153 0.183
1.5 0.038 0.066 0.095 0.124 0.153 0.182
20 0.033 0.059 0.085 0.111 0.134 0.162
25 0.030 0.056 0.077 0.097 0.120 0.135
3.0 0029 0.052 0.071 0.087 0.103 0.116
3.5 0.028 0.049 0.066 0.080 0.094 0.099
40 0.027 0.047 0.061 0.076 - 0.08355 0.099
50 0.026 0.045 0.057 0.068 0.085 0.098
6.0 0.026 0.042 0.054 0.068 0.082 0.096
7.0 0.0255 0.042 0.053 0.068 0.082 0.096
8.0 0.0255 0.042 0.052 0.068 0.082 0.097

10

Angle of Attack (deg)

M -2.0 -4.0 60  -80  -100
60 00201 -0.044 0067 -0.091 -0.115
0.2 -0020 -0.044 -0067 -0.091 -0.115
0.4 -0.019 -0043 -0.067 -0091 -0.115
0.6 -0.018 -0.042 -0.066 -0.089 -0.113
0.8 -0.016 -0.040 -0.064 -0.087 -0.111
1.0 -0.004 -0.027 -0051 -0.075 -0.098
1.2 0.003 -0.020 -0.058 -0.089 -0.119
1.5 0.009 0019 -0.048 -0.077 -0.106
20 0009 -00155 -0.045 -0.071 -0.097
2.5 0.007 .0.016 -0.043 -0.067 -0.092
3.0 0.005 -0.018 -0.041 -0.063 -0.089
3.5 0.004 -0.018 -0.040 -0.062 -0.086
4.0 0.004 -0.019 -0.040 -0.062 -0.085
5.0 0.005 -0.018 -0.038 -0.058 -0.082
60 0008 -0017 -0.028 -0.058 -0.078
7.0 0.008 .0.017 -0.028 -0.058 -0.076
8.0 0.008 -0.017 -0.028 -0.058 -0.075
Table 5. Lift Coefficient (core vehicle)
Angle of Attack (deg)
M +0.0 +20 +4.0 £6.0 +8.0 +10.0
8.0 0.2062 0.2088 0.2206 0.2417 0.2733 0.3160
10.0 0.2180 0.2201 0.2313 0.2523 0.2835 0.3262
12.0 0.2353 0.2374 0.2486 0.2703 0.3024 0.3459
Table 6. Drag Coefficient (core vehicle)
Angle of Attack (deg)
M +0.0 +2.0 +4.0 +6.0 +8.0 +10.0
8.0 0.2062 0.2089 0.2206 0.2417 0.2733 0.3160
10.0 0.2180 0.2201 0.2313 0.2523 0.2835 0.3262
12.0 02353 02374 0.2486 0.2703 0.3024 0.3459
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Abstract

The shooting method is used to solve the suboptimal control prob-
lem where the control history is assumed to be piecewise linear.
Suboptimal solutions can be obtained without difficulty and can
by increasing the number of nodes lead to accurate approximate
controls and good starting multipliers for the regular shooting
method. Optimal planar launch trajectories are presented for the
Advanced Launch System.

1. Introduction

The original motivation for using the shooting method to solve the
suboptimal control problem (piecewise linear control) has been
to calculate an accurate suboptimal control and ultimately to
find the corresponding neighboring extremal feedback control rule.
Since aerospace minima are usually quite flat, an approximate op-
timal control can deliver most of the optimal performance. Then,
the ability to compute the suboptimal control and the neighboring
extremal without difficulty would be useful.

in this paper, the shooting method is developed for the subop-
timal control problem and used to optimize the Advanced Launch
System trajectory. The usual sensitivity of the solution process
to the initial guesses disappears completely, and solutions are ob-
tained without difficulty. Of course, only an approximate optimal
control is achieved, but if it is not good enought, its accuracy can
be improved by increasing the number of control nodes.

2. Suboptimal Control Problem

The standard optimal control problem is to find the control u(?)
which minimizes the scalar performance index

J}
Jm(zpts)+ L L{t,z,u)dt (1)
subject to the system dynamics

= f(t,z,u), 2
and the prescribed boundary conditions

tom0, zom2Zo,, ¥)(3!,‘[)-°. (3)

The dimensions of z, u, and ¥ aren x 1,r x 1, and p X 1, respec-
tively. This problem is made into a suboptimal control problem
by normalizing the final time through the transformation = 1ty
and by restricting the class of functions to which the optimal con-
trol can belong. Here, the restricted class is that of piecewise
linear functions The end points uy, ..., m of the straight line
segments are called nodes.

I\.J. Thompson Regents Professor
1Graduate Research Assistant

Formally, this fixed-final-time suboptimal control problem is
to find the parameters uy, ..., Um, Uy which minimize the perfor-
maace index

J = Hzpnty) +]: L(r 2 t1y- - iy )T )
subject to the dynamics
2w J(r, 2, U100 Umits) s (5)
the prescribed boundary conditions
¥(zssts) = 0. (6)

In these equations, the prime deaotes & derivative with respect to
r, and

n=0, 2= 2o, r=l,

Lir,z,u1ye0 0 timty) = tyL(ty7,2,4)

(7
J(r,zunpe e lmidy) = t,f(ty7,2,u)

where
wWr)swu+ . T uh(f -n)y, BnETSNn (8)
L/ TS B /]
and the node times 7 are fixed.

By the usual arguments of the calculus of variations, the equa-
tions defining the suboptimal solution are given by

v=]
X =87 A=L+NL
f’fl.,dr-o kml,...,m ©)
j:' 'Bdr= -G, G=é+v'¥
and |
om0, ZTo=%, 7=l v=0, ;\,-Gf’. (10)

3. Shooting Method

To put the suboptimal control problem in a form suitable for ap-
plying the shooting method, new states vy(r) and w(r) are in-
troduced to eliminate the integrals in Eq. (9). The o_ptimality
conditions become

z.-]'ﬂ
N - T
vom By Eml,m 1)
w= 1y
and
ro=0, Zo=Zo, vi, = 0, wy=0
7y =1, v =0, A!=G:'. (12)
”l'gol I.IJIS-G.,,

dA L



If a new state vector ={(t) s defined as

:T=[rT AT (1)

e 1

and a parameter vector is introduced as

aT=[u| eer Ump fl], (14)
the differcntial equations (11) can be rewritten in the form
' = F(r,2,0) (15)

Of the initial states, there are 1 + n +m + 1 conditions; only
Ao is unknown. At the final time, there are in Eqs. (12} 1 +p +
n + m + 1 fina! conditions. Of these, p cquations are solved for
the p Lagrange multiplicrs » which are in turn eliminated from
the remaining conditions to form

h{z;,6) =0

whose dimension is (n + m+1) x 1.
The derivation of the equations for the shooting method is
straightforward and leads to the following algorithm:

- (16)

1. Guess Mg and a

2. Integrate from 7o = Qtory =1

?’=F zo known
o, = F;9,; o, =[010 0T (17)
V= FV+ F Yo=0
3.  Calculate j|&].
4.  Calculate §)o and a by solving
. §
[hy, &3, h.,v,][ ﬁ:] - —ah (18)

and using a norm reduction scheme to determine a.

5. Check for convergence ([lh]| < €). If not, go to 2.

The advantage of this method is that there is absolutely no
influence of do on z. On the other hand, the sensitivity of the
shooting method to Aq is replaced by having to accept an approx-
imate solution. However, by using a reasonable number of nodes,
it should be possible to obtain Ao's for which the exact shooting
method can be converged.

4, Optimal Planar Trajectory for the ALS

The Advanced Launch System is a two-stage rocket consisting of
a core with a side-mounted booster, Staging occurs at the fixed
time of burnout of the booster. Ref. 1 contains a dexcription of
the physical model.

In the optimization problem, the performance index is the final
mass; the state equations are the equations of motion for flight in
a great circle plane over 2 nonrotating spherical earth where the
control is the angle of attack; the initial conditions are all specified;
and final conditions are imposed on altitude, velocity, and flight
path angle.

Converged results are presented in Table 1 and Fig. 1 for three
first and second stage node arrangements. Starting multipliers for
the 3-2 case are given in Table 1, and the control nodes are taken
to be a = -.5, 10., 6., 4., -4. deg and t; = 300. sec. Convergence
required 17 iterations and 241 sec of CPU time on a CDC Cyber
computer. Also prescnted are the converged values obtained from
the standard shooting method. Note that the optimal results are
approached as the number of nodes is increased.

Other than having to derive the multiplier equations, no diffi-
cultics have been encountered during these calculations.

5. Conclusions

The shooting approach to suboptimal control is an effective way
1o obtain approximate optimal Lrajecturies and to obtain starting
Lagrange multipliers for the regular shooling method.
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Table 1: Converged Results

node pattern

-2 guess 3-2 5-3 9-9 optimum

1. 0.8522 0.85290 0.8541 0.8544

t/(sec) | 300.00 371.72 371.69 371.64 371.63
Ao 1.0 B 83266 | -B.025E-6 | -B8.914E-6 | -8.939E-0
Ao 1.0 314854 | -4.150E4 | -4.120E-4 | -4.125E-4
Ayo 10 126163 | 570263 | 3025E-8 | 2584E-3
Amg 1.0 2 004E5 | 201765 | -2.016E-5 | -2.013E-5
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Figure 1: Angle of Attack Histories

ORIGINAL PACE 15
OF POOR QUALITY



- e e s et M d S B

—~ AIAA Third Aerospace Planes Conference —

Orlando, F1.--December 1991

NEIGHBORING EXTREMAL GUIDANCE FOR SYSTEMS /’v’,)gﬂg I Al
WITH A PIECEWISE LINEAR CONTROL

David G. Hull! and Clifford E.Helfrich?

et Nidaad

The University of Texas at Austin
Austin, Texas

ABSTRACT

The neighboring extremal feedback control law is de-
veloped for systems with a piecewise linear control for
the case where the optimal control is obtained by non-
linear programming techniques. To develop the control
perturbation for a given deviation from the nominal
path, the second variation is minimized subject to the
constraint that the final conditions be satisfied. This
process leads to a feedback relationship between the
control perturbation and the measured deviation from
the nominal state. A simple example, the lunar launch
problem, is used to demonstrate the validity of the guid-
ance law. For model errors on the order of 5%, the
results indicate that 5% errors occur in the final condi-
tions.

I ION

In order to develop the neighboring optimal guidance
law for a dynamical system, it is first necessary to ob-
tain the optimal control, and this can be a formidable
task. Currently, most trajectory optimization is ac-
complished by restricting the class of control functions
to some subclass, say piecewise linear functions (sub-
optimal control). Then, the control variables are pa-
rameters (nodes of piecewise linear function), and the
suboptimal control is found by applying nonlinear pro-
gramming methods. Hence, the subject of this paper
is the development of the neighboring suboptimal feed-
back control law, assuming that the suboptimal control
law is available.

Given the suboptimal control and a perturbation in
the state at some time, the neighboring suboptimal con-
trol is found by minimizing the increase is the perfor-
mance index subject to the constraint that the final
conditions must be satisfied. Since the first variation
vanishes, minimizing the increase in the performance
index is equivalent to minimizing the second variation.
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The constraint of satisfying the final conditions is ob-
tained through the use of transition matrices to the final
point. The above process leads to an analytical expres-
sion for the gains of the neighboring suboptimal feed-
back control law. Because of the simplicity of the con-
trol law, the suboptimal control rule can be applied to
the vehicles rather than sample and hold. This should
allow the sample time to be increased, if errors do not
grow too rapidly.

To test this guidance rule, it is applied to a simple
trajectory problem with various levels of modeling er-
rors. The results indicate that this guidance approach
has merit.

SUBOPTIMAL CONTROL PROBLEM

The optimal control problem [1] being considered
here is to find the control history u(t) which minimizes
the performance index

J = ¢(ty,zs) (1)
subject to the state differential equations
= f(t,z,u), 2

the prescribed initial conditions

tO = tO,) Zo = Xo, » (3)

and the prescribed final conditions
¥(ty,2;)=0. 4)

Here, this problem is converted into a suboptimal con-
trol problem [2] by assuming that the controls are piece-
wise linear, meaning that the unknowns become the
junction points (nodes) of the linear control segments
and the final time.

If @ denotes the unknown parameter vector, that is,
aT = [ty, w1, Y12, ..., Y21, Y22, - - ], the suboptimal
control problem is stated as follows:

Find the set of parameters a which minimizes the
performance index

J = F(a) (5)



subject to the equality constraints
Cla)=0. (6)

The differential constraints are an integral part of defin-
ing the functions F and C and are written as

d
= =g(rz,0) )

70=0, zo=2, Ty =1

where 7 = t/t; and zo, are the specified values of the
initial states.

It is assumed that this problem is solved numerically
by using a nonlinear programming code, and the next
step is to find the neighboring suboptimal feedback con-
trol law.

NEIGHBOQRING SUBOPTIMAL CONTROL

The solution of the suboptimal control problem gives
nominal control and state histories to be followed by the
vehicle. However, because of modelling errors, the ve-
hicle when using the nominal control deviates from the
nominal state. Hence, it is desired to find the neighbor-
ing suboptimal control perturbation which enables the
vehicle to operate in the neighborhood of the nominal
trajectory. The general philosophy is to find the con-
trol perturbation which minimizes the increase in the
performance index while satisfying the prescribed final
conditions.

Since the first variation vanishes along the subopti-
mal path, the increase in the performance index is the
second variation

Al = §6aTGu6a (8)

where G = ® + T ¥ is the augmented performance in-
dex and v is a constant Lagrange multiplier. Once the
suboptimal control has been obtained numerically, the
second derivative matrix G,, can be computed numer-
ically. The next step is to find the constraints on ba
which guarantee satisfaction of the final conditions (4).

The variation of the state equation (7) leads to the
differential equation

d
Eéz = g; 62+ g4 ba {9)

which must be solved subject to the boundary condi-
tions
To = 70, 62‘0 = 620.

=1, Ve, 0z) + Yy, 6ty =0. (10)

Next, the solution of Eq. {9) is assumed to have the
transition matrix form

bz = Pbxy + Véa (11)

where

dy=1, W;=0 (12)

to guarantee that §z; = 6z;. Then, substituting Eq.
(11) into Eq. (9) and equating like coefficients leads to
the following differential equations:

¢ = g @
v = ¢g.¥+g,

(13)

which must be solved subject to the boundary condi-
tions (12). Once ® and ¥ have been obtained, Eq. (11)
can be used.
To satisfy the final condition (10), Eq. (11) is rewrit-
ten as
bz =9 16z - ¢"'V¥éa (14)

Then, assuming ¥;, =0, Eq. (10) leads to

Ve, 8716z — g @ WEa =0 . (15)
Applied to 7o, this equation becomes

¥, 85 Woba — e, 85820 = 0 (16)

and is the constraint on the control node perturbation
5a imposed by the final condition.

The last step is to minimize AJ as given by Eq. (8)
with respect to 8a subject to the constraint (16). Stan-
dard parameter optimization methods lead to

ba = Kobzo 17
where the gain Ky is given by

Ko =G W39 ¥,

- - ! _ - 18
(0,83 ¥oGoI T 8527 ) 850 (P

If the sampling is performed continnously, the param-
eter perturbation becomes

a=K bz (19)

where

K = G¥Te 'y, (20)

(r, &1 GIWT R 1T, ) e, @71
These gains can be computed at several values of 1
and stored in the onboard computer for interpolation
purposes.



Two difficulties occur in the use of Eq. (19) as a
guidance law. First, ¥ goes to zero as 7 approaches
unity so that the computation of the gains becomes
indefinite (zero over zero). This has been handled in
the following application by computing the gains at 7 =
950 and T = .975 and extrapolating them to 7 = 1.
The second problem is determining the value of 7 on
the perturbed path since the perturbed final time is
unknown. This has been accomplished iteratively by
guessing 6ty, computing T = t/(ty + 6ty), computing
a and, hence, 6ty, and repeating the computation until
the computed 6t; nearly equals the guessed 6t;.

EXAMPLE — LUNAR LAUNCH PROBLEM

The lunar launch problem has been selected as a sim-
ple example to illustrate the application of this guidance
law. The optimal control problem is to find the thrust
inclination history 8(t) which minimizes the time to in-
sertion

J=1 (21)

subject to the differential constraints

a:: = u
t!{l : Z cosd (22)
v = asnf-g,
the prescribed initial conditions
to=zo=w=u=vw=0, (23)

and the prescribed final conditions

yo = 50,000 ft, uo = 5,444 ftfsec, vo =0 ft /sec.
(24)
The quantities o and g are the constant thrust acceler-
ation and lunar acceleration of gravity whose nominal
values are a = 20.8 ft/sec’ and g = 5.32 ft/sec?.
Using five nodes for the suboptimal control calcula-
tion leads to

ty = 2727 sec,
6, = 26.00 deg,
6, = 2068 deg
6, = 15.34 deg, (25)
6, = 9.061 deg,
8y = 3.113 deg

To test the guidance law, a 5% error is introduced
in a which drives the vehicle away from the nominal.
Gains have been computed stored at each .025 in 7.
Two implementations have been performed: one is to

a 1% Change |State | % Deviation from Optimal |
1 . Sample- Integrate
(;{_"7) ma Hold Control
19.760] -5.0 y | L5 1.15
u 5.96 6.35
v 0.88 0.81
21.840{ +5.0 y 0.99 0.96
u 4.50 445
v 0.34 1.00

Table 1: Results for 5% Modeling Error in Thrust

9 1% Change | State[% Deviation from Optimal

t . Sample- Integrate

(;!‘_“') mg Hold Control
5.054 -5.0 y 0.07 0.08
u 0.11 0.26
h v | 02 0.01
15586 ] +5.0 y 0.10 0.09
u | 043 041
v 0.17 0.07

Table 2: Results for 5% Modeling Error in Gravity

use sample and hold and the other is to use the actual
linear control. Results are shown for a 4 sec sample
time in Table 1. Note that a 5% error in a leads to
roughly a 5% error in the insertion conditions.

That the linear control does not do uniformly better
than sample and hold is disappointing. It is felt that
the sample time could be increased substantially for the
linear control relative to sample and hold and still yield
good results. At any rate these are preliminary results
and further study is warranted.

Similar results have been developed for a 5% error in
g and are shown in Table 2. Qualitatively, these results
are similar to those in Table 1.

DISCUSSION AND CONCLUSIONS

The neighboring extremal feedback control law has
been developed for systems with a piecewise-linear con-
trol whose nominal control and trajectory have been
computed using nonlinear programming techniques.
Given a perturbation in the state, the neighboring ex-
tremal control perturbation is obtained by minimizing
the increase in the performance index relative to the
nominal value subject to the constraint that the final
conditions be satisfied. Numerical results for the lunar




launch problem with mismatches in the thrust accel-
eration and gravity acceleration show that 5% model
errors lead to 5% final condition errors. Further study
of this guidance law seems warranted.
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Abstract

The neighboring extremal feedback control law is
developed for systems with a piecewise linear control
for the case where the optimal control is obtained by
nonlinear programming techniques. To develop the
control perturbation for a given deviation from the
nominal path, the second variation is minimised sub-
ject to the constraint that the final conditions be sat-
isfied. This process leads to a feedback relationship
between the control perturbation and the measured
deviation from the nominal state.

Introduction

In order to develop the neighboring optimal guid-
ance law for a dynamical system, it is first neces-
sary to obtain the optimal control. Currently, most
trajectory optimisation (see Ref. 1 for example) is
accomplished by restricting the class of control fumc-
tions to some subclass, say piecewise linear functions
(suboptimal control). Then, the control variables are
parameters (nodes of piecewise linear function), and
the suboptimal control is found by applying nomlin-
ear programming methods. Hence, the subject of this
paper is the development of the neighboring subop-
timal feedback control law, assuming that the sub-
optimal control law is available.

Suboptimal Control Problem

The optimal control problem being considered here
is to find the control history u(r) which minimizes
the performance index

J= ¢(:!!tl) (1)
subject to the state differential equations
dz
(—i;=f(r,z,u,t,) ) (2)

the prescribed initial conditions

To = To,» Ty = Zo,» (3)

1M. J. Thompson Regents Professor

and the prescribed final conditions

=1 ¥(=zy)=0. (4)

Here, the time has been normalized by the final time,
that is, T = t/t; where t; is an unknown parame-
ter. This optimal control problem is converted into a
suboptimal control problem (parameter optimization
problem) by assuming that controls are piecewise lin-
ear, meaning that the unknowns become the nodes
of the linear control segments and the final time.

If a denotes the unknown parameter vector, that
is, aT = [ty, us1, w12, ..., Y21, Y22, ... ], the differ-
ential equations (2) and its boundary conditions can
be rewritten as

j_: = '(T,t,d), T9=To,, ZT0o=2%0,, T~ 1.

()
Given &, these equations can be integrated to obtain
2y = z/(a) so that ¢ = ¢[zs(a),ty] = F(a) and
¥ = ¥[z;(a),t;] = C(a) Then, the suboptimal con-
trol problem is to find the parameter vector a which
minimises the performance index J = F(a) subject
to the constraint C(a) = 0.

To solve the suboptimal control problem ans-
lytically, the augmented performance index J =
F(a) + vTC(a) 2 G(a,v) is formed. The first vari-
ation conditions are G, = 0 and C = 0 which de-
termine a and v. The second variation becomes
627" = 6aTGaeba > 0 where C,éa = 0. 6a can be
divided into dependent and independent parts, and
the second variation condition becomes the positive
definiteness of a matrix.

At this point, it is assumed that the suboptimal
control problem is solved by using a nonlinear pro-
gramming code (see Ref. 1, for example), and the
next step is to find the neighboring suboptimal con-
trol.

Neighboring Suboptimal Control

The solution of the suboptimal control problem
gives nominal control and state histories to be fol-
lowed by the vehicle. However, because of modelling
errors, the vehicle when using the nominal control



deviates from the nominal state. Hence, it is desired
to find the neighboring suboptimal control pertur-
bation which enables the vehicle to operate in the
neighborhood of the nominal trajectory. The gen-
eral philosophy is to find the control perturbation
which minimizes the increase in the performance in-
dex while satisfying the prescribed final conditions.

Since the first variation vanishes along the subop-
timal path, the increase in the performance index is
the second variation

AJ =} 6aTGaaba (6)

subject to C,6a = 0 which is imposed below. Once
the suboptimal control has been obtained, the second
derivative matrix G,, can be computed numerically.
The next step is to find the constraints on éa which
guarantee satisfaction of the final conditions (4).

The variation of the state equation (5) leads to the
differential equation

d
a—;éz =g, 62+ g, ba )

which must be solved subject to the boundary con-
ditions

T T0.» 6‘0 = &:0. (8)
=1, Ve, 62 + 9,6t =0.

Next, the solution of Eq. (7) is assumed to have the

transition matrix form

6z = ®bz; + ¥éa 9
where
¢, =1, ¥; =0 (10)

to guarantee that 6z; = 6z;. Then, substituting Eq.
(9) into Eq. (7) and equating like coeflicients leads
to the following differential equations:

’I
‘l

g9: @
9:w+g¢ (11)

which must be solved subject to the boundary con-
ditions (10). Once & and ¥ have been obtained, Eq.
(9) can be used.

To satisfy the final condition (8), Eq. (9) is rewrit-
ten as

bzy = ® 16z — &' VWéa (12)
Then, for the case where ¢, = 0, Eq. (8) leads to

Yr, @ 6z — ¢, @7 WEa = 0. (13)
Applied to g, this equation becomes

Ve, 85 ' Woba — Yr, B5 620 = 0 (14)

and is the constraint on the control node perturba-
tion éa imposed by the final condition.

The last step is to minimize AJ as given by Eq.
(6) with respect to éa subject to the constraint (14).
Standard parameter optimization methods lead to

ba = Ko&to (15)
where the gain Kj is given by
Ko = Gl Wi &;7¢],-

- - - (16)
(¥, 85 oG, WG 85 Y] )7 s, Bg 1

Application

In Ref. 2, neighboring suboptimal control has been
applied in the same manner as neighboring optimal
control, that is, sampling is assumed to occur contin-
uously so that 7, = 7. However, in optimal control,
any part of an optimal trajectory to the final con-
straint manifold is an optimal trajectory, but this is
not the case in suboptimal control. In fact, there
may not even be enough nodes between the sample
point and the final constraint manifold to satisfy the
boundary conditions.

Two alternate approaches are being comsidered.
First, additional nodes are placed near the final
constraint manaifold to make neighboring suboptimal
comtrol valid near the end of the trajectory. Secomd,
the suboptimal control is computed from each node
to the final constraint manifold, and the gains (16)
are computed at each node. These gains are linearly
interpolated for the operation of the vehicle. Unfor-
tunately, no results for either case are available at
the time of this writing.
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The neighboring optimal feedback control law is developed for sys-
tems with a piecewise linear control for the case where the optimal
control is obtained by nonlinear programming techniques. To de-
velop the control perturbation for a given deviation from the nomi-
nal path, the second variation is minimized subject to the constraint
that the final conditions be satisfied (neighboring suboptimal con-
trol). This process leads to a feedback relationship between the
control perturbation and the measured deviation from the nomi-
nal state. Neighboring suboptimal control is applied to the lunar
launch problem. Two approaches, single optimization and multiple
optimization, for calculating the gains are used, and the gains are
tested in a guidance simulation with a mismatch in the acceleration
of gravity. Both approaches give acceptable results, but multiple
optimization keeps the perturbed path closer to the nominal path.

INTRODUCTION

In order to develop the neighboring optimal guidance law for a dynamical system,
it is first necessary to obtain the optimal control. Currently, most trajectory opti-
mization (see Ref. 1, for example) is accomplished by restricting the class of control
functions to some subclass, say piecewise linear functions (suboptimal control). Then,
the control parameters are the nodes of a piecewise linear function, and the subop-
timal control is found by applying nonlinear programming methods. The subject of
this paper is neighboring optimal control for systems with piecewise linear controls,
or neighboring suboptimal control, and its application to vehicle guidance.

In Refs. 2 and 3, the neighboring suboptimal control problem is formulated as a
free final time problem and applied to the lunar launch problem. This formulation
requires an iteration at each sample point to find the normalized time. In this paper,
neighboring suboptimal control is formulated as a fixed final time problem and applied

*M. J. Thompson Regents Professor
tGraduate Student, Major, USAF



to the lunar launch problem. While this problem is a minimum time problem, it can
be converted to a “fixed final time” problem by using the horizontal component of
velocity, whose final value is fixed, as the variable of integration.

Two approaches for computing the control gains are presented. In the single
optimization approach, the nominal suboptimal control is viewed as a sequence of
reduced-node suboptimal controls to the final constraint manifold. Hence, the quality
of the suboptimal control diminishes along the flight path. In the multiple optimiza-
tion approach, a new full-node suboptimal control is computed from each node of the
nominal suboptimal trajectory to the final constraint manifold. Hence, the quality of
the suboptimal control along the flight path is maintained.

After the suboptimal control problem and the neighboring suboptimal control
problem are summarized, the lunar launch problem is defined. Then, the single
optimization and multiple optimization approaches are used to compute the gains
which are, in turn, tested in a simulation with a mismatch in the acceleration of
gravity. Finally, some conclusions are reached about the use of these two approaches.

SUBOPTIMAL CONTROL PROBLEM

The fixed final time optimal control problem being considered here is to find the
control history u(r) which minimizes the performance index

J = d(zy) (1)

subject to the state differential equations

dz
—_— 2
dT f(T, z’ u)’ ( )
the prescribed initial conditions
To = To,y, Zo = To,» (3)
and the prescribed final conditions

=1,  P(zs)=0. (4)

Here, the time has been normalized by the final time, that is, 7 = t/t;. This op-
timal control problem is converted into a suboptimal control problem (parameter
optimization problem) by assuming that controls are piecewise linear, meaning that
the unknowns become the nodes of the linear control segments.

If @ denotes the unknown parameter vector which for one control is written as
aT = [uy,us,...,ur], the differential equation (2) and its boundary conditions can be
rewritten as

(é_::_ = g(f,$,a) (5)

To = To,» To = T, Tf =1. (6)
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Given a, these equations can be integrated to obtain z; = z;(a) so that J =
#lzs(a)] = F(a) and 9[zs(a)] = C(a) Then, the suboptimal control problem is to
find the parameter vector @ which minimizes the performance index J = F(a) sub-
ject to the constraint C'(a) = 0.

To solve the suboptimal control problem analytically, the augmented performance

index J' = F(a) + vTC(a) & G(a,v) is formed. The first variation conditions are

G, = 0 and C = 0 which determine a and v. The second variation becomes 6*J' =
6aTG,.6a > 0 where C,6a = 0. 6a can be divided into dependent and independent
parts; the dependent parts can be eliminated; and the second variation condition
becomes the positive definiteness of a matrix.

At this point, it is assumed that the suboptimal control problem is solved by using
a nonlinear programming code (see Ref. 1, for example), and the next step is to find
the neighboring suboptimal control.

NEIGHBORING SUBOPTIMAL CONTROL

The solution of the suboptimal control problem gives nominal control and state
histories to be followed by the vehicle. However, because of modeling errors, the
vehicle deviates from the nominal state. Hence, it is desired to find the neighboring
suboptimal control perturbation which enables the vehicle to operate in the neigh-
borhood of the nominal trajectory. The general philosophy is to find the control
perturbation which minimizes the increase in the performance index while satisfying
the prescribed final conditions.

Since the first variation vanishes along the suboptimal path, the increase in the
performance index is the second variation

AJ = %6aTGa,,6a (M

where the second derivative matrix G, can be computed numerically. The elements of
6a are not independent but are constrained by the need to satisfy the final conditions

§¢ = b, 6z; = 0. | (8)

The variation of the state equation (5) leads to the differential equation

d
E;&.r = g, 6T + g, ba (9)

which must be solved subject to the boundary conditions

To = To,» 6.’E0 = 61‘0’
Tf = 1, z,brléxj = 0.

(10)

Next, the solution of Eq. (9) is assumed to have the transition matrix form

bz = Pbzy + Véa (11)

3



where
o, =1, U, =0 ) (12)

to guarantee that 6z, = §z;. Then, substituting Eq. (11) into Eq. (9) and equating
like coefficients leads to the differential equations

¥V = g.¥+4a (13)
' = g, @

which must be solved subject to the boundary conditions (12). Once & and ¥ have
been obtained, Eq. (11) can be used.
To satisfy the final condition (10), Eq. (11) is evaluated at 7 and rewritten as

bz; = B3 6z0 — B5' Yoba (14)
Then, Eq. (10) leads to
1/),,@51‘1’0& - 1/),,,‘1’516:1:0 =0 (15)

which is the constraint on the control node perturbation, éa, imposed by the final
condition.

The last step is to minimize AJ as given by Eq. (7) with respect to §a subject to
the constraint (15). Standard parameter optimization methods lead to

bda = Kobzxo (16)

where the gain K is given by

Ko = Go2T 0 TyT (e, 85" WoGol V5 8517, ) 'z, B5 (17)

The computation of the gains can be checked by observing that Ko = 0a° 8z,
and using numerical differentiation. Given a suboptimal control and state history,
a perturbation in the state is introduced at some node, and the suboptimal control
from that perturbed state to the final constraint manifold is computed. The gains
are computed as Ko(4,7) = Aa(i)/ Azo(j) where Aa is the change in the suboptimal
control caused by the change in the state.

The application of neighboring suboptimal control as a guidance law is discussed
in terms of the lunar launch problem which is defined in the next section.



LUNAR LAUNCH PROBLEM

The lunar launch problem is to insert a payload in circular lunar orbit over a
flat moon using a rocket with constant thrust acceleration. While this is a free final
time problem, it can be converted to a “fixed final time” problem by choosing the
horizontal component of velocity as the variable of integration. With the variable
of integration normalized as @ = (u — up)/(uy — o), the optimal control problem
is stated as follows: Find the thrust inclination history f(iz) which minimizes the
performance index

J = ty (18)
subject to the equations of motion

dt  (us— ug)
di =~  acosd (19)
dy  (us— ug )V
di acosf (20)
dv (uy — uo)(asinf — g)
—_ = 21
du acosd (21)

and the boundary conditions

ﬁ0=0yt0=07y0=07v0=0$ (22)
i; =1, yy = 50,000 ft, vy = 0 ft/sec. (23)
In these equations, a = 20.8 ft / sec? is the thrust acceleration, g = 5.32 ft / sec’ is the

acceleration of gravity, uy = 5444 ft/sec is the satellite speed, and ug = 0 ft/sec.

For a piecewise linear control involving nine nodes, the nonlinear programming
code VF02AD gives the following suboptimal control in degrees:

6, = 26.01 6, = 2331 6, = 20.51

Two approaches for applying neighboring suboptimal control are discussed: the
single optimization approach and the multiple optimization approach. Here, uo = 0
for the single optimization approach or a node value for the multiple optimization
approach. In Ref. 4, neighboring suboptimal control results are presented for the cases
where there is a thrust acceleration or a gravity modeling error. Only the gravity
case is discussed here because it has the largest errors.



SINGLE OPTIMIZATION APPROACH

In this approach, the suboptimal control from node 1 to node 9 is considered to
be a sequence of reduced-node suboptimal controls. In other words, the suboptimal
control from node 1 to node 9 is a nine-node suboptimal control. From node 2 to
node 9, it is an eight-node suboptimal control; from node 3 to node 9, it is a seven-
node suboptimal control; and so on. At node 8, there are only two nodes available,
but these are enough to satisfy the boundary conditions (no optimization). Next, the
9 x 3 gain matrix, Ko in Eq. (17), is computed backward to each node and saved. The
gains associated with the state ¢ are all zero because there is no condition imposed
on t;. Hence, the gain matrix, reduces to a 9 X 2 matrix, and the states are now
6z = [byo bwol.

If the state perturbation occurs at node 8, only 8ag is of interest for a sample and
hold system. Hence, only the gains Ko(8, 1) and Ko(8,2) are needed. Similarly, if the
state perturbation occurs at node 7, only Ko(7,1) and Ko(7,2) are needed to compute
6as, and so on. For a state perturbation between nodes, the gains are obtained by
linearly interpolating the gains at adjacent nodes. To have gains over the last or 8th
interval, the gains at nodes 7 and 8 are linearly extrapolated. In conclusion, only the
gains Ko(i,1) and Ko(i,2) wherei =1,..., 9 need to be stored in the flight computer.

This approach to neighboring extremal control is tested by introducing a F5%
error in the acceleration of gravity. In other words, the true value of g is taken to be
¥5% different than the value being used in the computation of the gains. Gains are
computed and stored at every node or at every 0.125@ for 9 nodes (Table 1). The
sample points are assumed to occur at every integration step of the simulation. Here,
64 integration steps are used so that a sample point occurs every 0.0156254. The
nominal states are obtained by numerical integration of the equations of motion sub-
ject to the suboptimal control (24). The true states are obtained by integrating the
equations of motion with the true acceleration of gravity subject to the neighboring
suboptimal control. At each sample point, the true states and nominal states are
differenced and the differences multiplied by the gains to obtain the control pertur-
bation. The control perturbation is assumed constant over the sample period, but
it is added to the piecewise-linear nominal control. Hence, the applied control varies
linearly over the sample period.

The deviations between the true states and the desired values at the final point are
presented in Table 2 along with the values which would have been obtained had the
nominal control (24) been applied open loop. On a relative basis, the improvement
is substantial. However, a statement about the absolute quality of the closed-loop
results cannot be made without some performance criteria, say for example, that the
vehicle has only so much AV to meet the desired final conditions precisely.

Time histories of the deviations are shown in Fig. 1. Throughout the trajectory,
the deviations are small, but they do not go to zero at the end. There are two
possible reasons for this: (a) the quality of the suboptimal trajectory as the vehicle
moves along its path and (b) the size of the last interval over which the gains are
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Table 1

9-NODE SINGLE OPTIMIZATION GAINS

Node

© 00 =1 UL Wi

obtained by extrapolation.

Both of these concerns can be a
the computations have been repe
presented in
However, the

Table 2 and show consi
deviation histories do not change appreciably relative to Fig. 1.

y Gain v_Gain
-0.369E-5 -0.673E-3
-0.289E-5 -0.462E-3
-0.385E-5 -0.521E-3
-0.573E-5 -0.640E-3
-0.940E-5 -0.831E-3
-0.179E-4 -0.118E-2
-0.461E-4 -0.201E-2
-0.267E-3 -0.581E-2
-0.488E-3 -0.961E-2

ddressed by increasing the number of nodes. Hence,
ated for 17 nodes. The final point deviations are
iderable improvement relative to those of 9 nodes.

Table 2

DEVIATION FROM DESIRED FINAL CONDITIONS

Closed Loop Closed Loop Closed Loop

% Change 9 Node 17 Node 9 Node
in g State Open Loop Single Opt. Single Opt. Mult. Opt.
-5.0 Yy 9891.024 65.178 20.959 48.137

vy 72.540 -2.705 -1.977 -1.566
+5.0 Yy -9891.023 -63.989 -19.917 -47.891
vy -72.540 2.616 1.832 1.542
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Figure 1: 9-Node Single Optimization Deviation Histories

MULTIPLE OPTIMIZATION APPROACH

In an attempt to improve just the quality of the neighboring suboptimal control, a
9-node suboptimal control to the final constraint manifold is computed from each node
of the nominal trajectory (Fig. 2), and the gains are computed for each subtrajectory
by Eq. (17). These gains are presented in Table 3 and are seen to be larger than those
of the single optimization approach and uniformly increasing toward the final point.
The use of these gains in the simulation with a 5% mismatch in the acceleration of
gravity leads to the final results of Table 2. These closed-loop results are somewhat
better than those of the single optimization results for 9 nodes.

The time histories of the deviations are shown in Fig. 3. Overall these deviations
are smaller than those of single optimization. Again, the fact that the deviations do
not go to zero can probably be attributed to the extrapolation of the gains at nodes
7 and 8 over the last interval.

DISCUSSION AND CONCLUSIONS

Two approaches for computing the gains for the neighboring suboptimal control
guidance law have been tested in a simulation of a lunar launch vehicle: the single
optimization approach and the multiple optimization approach. In both approaches,



Figure 2: Multiple Optimization Approach

9-NODE MULTIPLE OPTIMIZATION GAINS

Node

O 00 ~I D O W=

Table 3

y Gain
-0.369E-5
-0.494E-5
-0.688E-5
-0.101E-4
-0.161E-4
-0.290E-4
-0.661E-4
-0.267E-3
-0.468E-3

v_Gain
-0.673E-3
-0.780E-3
-0.921E-3
-0.112E-2
-0.141E-2
-0.190E-2
-0.288E-2
-0.581E-2
-0.874E-2
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Figure 3: 9-Node Multiple Optimization Deviation Histories

a suboptimal control and trajectory with evenly spaced nodes is used as a base, and
the number of gains which must be stored is very small.

For single optimization, that part of the suboptimal trajectory from a generic
node to the final constraint manifold is thought of as a reduced-node suboptimal
trajectory. Hence, the control becomes less optimal (fewer nodes) toward the end of
the trajectory and eventually runs out of nodes for satisfying the boundary conditions.
However, the gains generated by this approach produce good results in a guidance
simulation. The final point results can be improved by increasing the number of
nodes.

The multiple optimization approach is to find a full-node suboptimal control from
each node of the nominal path to the final constraint manifold. Gains generated from
these subtrajectories are larger than those of the single optimization approach, are
uniformly increasing toward the final point, and produce better guidance results, that
is, the deviations are smaller along the path.

From these results, it is apparent that the single optimization approach can satis-
factorily meet the final conditions. On the other hand, if the perturbed trajectory is
to lie close to the nominal trajectory, the quality of the optimization along the path
must be improved. Multiple optimization does this, but the amount of computation
is considerably more than that of single optimization.
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