3,402 research outputs found

    Range filtering for sequential GPS receivers with external sensor augmentation

    Get PDF
    The filtering of the satellite range and range-rate measurements from single channel sequential Global Positioning System receivers is usually done with an extended Kalman filter which has state variables defined in terms of an orthogonal navigation reference frame. An attractive suboptimal alternative is range-domain filtering, in which the individual satellite measurements are filtered separately before they are combined for the navigation solution. The main advantages of range-domain filtering are decreased processing and storage requirements and simplified tuning. Several range filter mechanization alternatives are presented, along with an innovative approach for combining the filtered range-domain quantities to determine the navigation state estimate. In addition, a method is outlined for incorporating measurements from auxiliary sensors such as altimeters into the navigation state estimation scheme similarly to the satellite measurements. A method is also described for incorporating inertial measurements into the navigation state estimator as a process driver

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Singular value decomposition-based robust cubature Kalman filtering for an integrated GPS/SINS navigation system

    Get PDF
    A new nonlinear robust filter is proposed in this paper to deal with the outliers of an integrated Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) navigation system. The influence of different design parameters for an H∞ cubature Kalman filter is analysed. It is found that when the design parameter is small, the robustness of the filter is stronger. However, the design parameter is easily out of step in the Riccati equation and the filter easily diverges. In this respect, a singular value decomposition algorithm is employed to replace the Cholesky decomposition in the robust cubature Kalman filter. With large conditions for the design parameter, the new filter is more robust. The test results demonstrate that the proposed filter algorithm is more reliable and effective in dealing with the outliers in the data sets produced by the integrated GPS/SINS system

    Adaptive Kalman Filter for Navigation Sensor Fusion

    Get PDF

    GPS/INS Integration Accuracy Enhancement Using the Interacting Multiple Model Nonlinear Filters

    Get PDF
    In this paper, performance evaluation for various single model nonlinear filters and nonlinear filters with interactingmultiple model (IMM) framework is carried out. A high gain (high bandwidth) filter is needed to response fast enoughto the platform maneuvers while a low gain filter is necessary to reduce the estimation errors during the uniformmotion periods. Based on a soft-switching framework, the IMM algorithm allows the possibility of using highly dynamicmodels just when required, diminishing unrealistic noise considerations in non-maneuvering situations. The IMMestimator obtains its estimate as a weighted sum of the individual estimates from a number of parallel filters matchedto different motion modes of the platform. The use of an IMM allows exploiting the benefits of high dynamic models inthe problem of vehicle navigation. Simulation and experimental results presented in this paper confirm theeffectiveness of the method

    GA-SVR and pseudo-position-aided GPS/INS integration during GPS outage

    Get PDF
    The performance of Global Positioning System and Inertial Navigation System (GPS/INS) integrated navigation is reduced when GPS is blocked. This paper proposes an algorithm to overcome the condition where GPS is unavailable. Together with a parameter-optimised Genetic Algorithm (GA), a Support Vector Regression (SVR) algorithm is used to construct the mapping function between the specific force, angular rate increments of INS measurements and the increments of the GPS position. During GPS outages, the real-time pseudo-GPS position is predicted with the mapping function, and the corresponding covariance matrix is estimated by an improved adaptive filtering algorithm. A GPS/INS integration scheme is demonstrated where the vehicle travels along a straight line and around a curve, with respect to both low-speed-stable and high-speed-unstable navigation platforms. The results show that the proposed algorithm provides a better performance when GPS is unavailable

    Validation and Experimental Testing of Observers for Robust GNSS-Aided Inertial Navigation

    Get PDF
    This chapter is the study of state estimators for robust navigation. Navigation of vehicles is a vast field with multiple decades of research. The main aim is to estimate position, linear velocity, and attitude (PVA) under all dynamics, motions, and conditions via data fusion. The state estimation problem will be considered from two different perspectives using the same kinematic model. First, the extended Kalman filter (EKF) will be reviewed, as an example of a stochastic approach; second, a recent nonlinear observer will be considered as a deterministic case. A comparative study of strapdown inertial navigation methods for estimating PVA of aerial vehicles fusing inertial sensors with global navigation satellite system (GNSS)-based positioning will be presented. The focus will be on the loosely coupled integration methods and performance analysis to compare these methods in terms of their stability, robustness to vibrations, and disturbances in measurements

    Benchmarking CPUs and GPUs on embedded platforms for software receiver usage

    Get PDF
    Smartphones containing multi-core central processing units (CPUs) and powerful many-core graphics processing units (GPUs) bring supercomputing technology into your pocket (or into our embedded devices). This can be exploited to produce power-efficient, customized receivers with flexible correlation schemes and more advanced positioning techniques. For example, promising techniques such as the Direct Position Estimation paradigm or usage of tracking solutions based on particle filtering, seem to be very appealing in challenging environments but are likewise computationally quite demanding. This article sheds some light onto recent embedded processor developments, benchmarks Fast Fourier Transform (FFT) and correlation algorithms on representative embedded platforms and relates the results to the use in GNSS software radios. The use of embedded CPUs for signal tracking seems to be straight forward, but more research is required to fully achieve the nominal peak performance of an embedded GPU for FFT computation. Also the electrical power consumption is measured in certain load levels.Peer ReviewedPostprint (published version
    corecore