6 research outputs found

    Command Filter Backstepping Sliding Model Control for Lower-Limb Exoskeleton

    Get PDF
    A command filter adaptive fuzzy backstepping control strategy is proposed for lower-limb assisting exoskeleton. Firstly, the human-robot model is established by taking the human body as a passive part, and a coupling torque is introduced to describe the interaction between the exoskeleton and human leg. Then, Vicon motion capture system is employed to obtain the reference trajectory. For the purpose of obviating the “explosion of complexity” in conventional backstepping, a second-order command filter is introduced into the sliding mode control strategy. The fuzzy logic systems (FLSs) are also applied to handle with the chattering problem by estimating the uncertainties and disturbances. Furthermore, the stability of the closed-loop system is proved based on the Lyapunov theory. Finally, simulation results are presented to illustrate the effectiveness of the control strategy

    Nonlinear Disturbance Observer Based Sliding Mode Control of a Human-Driven Knee Joint Orthosis

    No full text
    International audienceThe present paper deals with the control of a knee joint orthosis intended to be used for rehabilitation and assistive purposes. A model, integrating human shank and orthosis, is presented. To reduce the influence of the uncertainties in muscular torque modeling on the system control, a nonlinear observer is proposed to estimate the muscular torque developed by the wearer. Additionally, a robust terminal sliding mode control approach combined with the nonlinear observer is presented. To illustrate the effectiveness of the proposed control method, a comparison with two control methods, basic sliding mode and sliding mode with nonlinear observer, are also given. The asymptotic stability of the presented approaches and observer convergence are proved by means of a Lyapunov analysis. Furthermore, the proof of advantage of the robust terminal sliding mode control method with the nonlinear observer (improving the tracking precision and reducing the required time for eliminating external disturbances) is proposed as well. The experiment results show that the robust terminal sliding mode control approach combined with the nonlinear observer has a significant advantage with respect to the position tracking and robustness regarding the modeling identification errors and external disturbances
    corecore