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A command filter adaptive fuzzy backstepping control strategy is proposed for lower-limb assisting exoskeleton. Firstly, the human-
robotmodel is established by taking the humanbody as a passive part, and a coupling torque is introduced to describe the interaction
between the exoskeleton and human leg. Then, Vicon motion capture system is employed to obtain the reference trajectory. For
the purpose of obviating the “explosion of complexity” in conventional backstepping, a second-order command filter is introduced
into the sliding mode control strategy. The fuzzy logic systems (FLSs) are also applied to handle with the chattering problem by
estimating the uncertainties and disturbances. Furthermore, the stability of the closed-loop system is proved based on the Lyapunov
theory. Finally, simulation results are presented to illustrate the effectiveness of the control strategy.

1. Introduction

Recently, the exoskeleton is increasingly used for power-
assisting in industrial [1, 2], medical [3–5], and military [6, 7]
areas. The human operator provides locomotion intention
and a small muscle strength while the robot can help human
complete the desired action with a suitable torque through
replicating the operator’s movements [2]. The robot in such
applications has been actively researched since 1990s, and
some of them have been applied for various environments
[8]. However, there are challenging problems in exoskeleton
research such as the establishment of coupling model of
human-robot system and designing of control strategy.

From the modeling point of view, it has been proved
that some methods used now are effective such as Newton-
Euler equations and Lagrange dynamics [9, 10]. Based on
aforementioned work, series of improvements have been
proposed to increase the accuracy of human-robot system
model. The inverse dynamic model is established and the
singular points are avoided using damped least squares in [2].
In order to approximate the actual situation of human legs, a
variety of musculoskeletal models are developed [11, 12]. The
comparison between Hill-type and proportional model for

human muscle is illustrated in [12], and Hill-type models are
proved to be more appropriate.

Nowadays, there have been several published papers
on control strategies of human-robot cooperative control
[13–18]. For instance, a sensitivity amplification control is
proposed in [19] which could track the desired trajectory by
minimizing the interaction torque. In [20], a robust sliding
mode controller is proposed to guarantee the stability in
disturbance situation, and the boundary layer is introduced
to reduce the chattering problem of sliding model control.
Additionally, an adaptive sliding model control based on
state observer is proposed in [21], which could update the
controller parameters online to improve the safety of the
system.

However, most of the control methods mentioned have
limitations. In modeling, taking the human effects as dis-
turbance [22], widely used in exoskeleton researches, is
unreasonable. Human body is a part of the system obviously.
Additional, the system has high-order features when taking
the human body as a passive part [19]. Hence, the control
strategies above are not available because of the “explosion
of complexity” [23].

In this paper, a command filtered backstepping sliding
model control equipped with FLSs is proposed based on

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 1064535, 10 pages
https://doi.org/10.1155/2017/1064535

https://doi.org/10.1155/2017/1064535


2 Mathematical Problems in Engineering

a human-robot model. Compared with the analogous liter-
ature, the main contributions are summarized as follows:

(i) The proposed human-robot model is established by
taking the human leg as a passive part and the cou-
pling torque between human and robot is introduced.
Compared with the model built in [19], this paper
converts the transfer to the state space form and
introduces uncertainties and disturbances which are
more actual and complicated.

(ii) For the purpose of testing the controller performance,
an experiment is implanted to obtain the actual
trajectory of the hip-joint. Compared with the sine
curve, the upper bound increases rapidly after a few
derivative operations, which may cause the system
uncontrollable.

(iii) The command filter backstepping sliding model con-
trol is proposed. By using the command filter, the
analytical derivate is unnecessary and the “explosion
of complexity” in the controller design process is
avoided [24–26]. Besides, the problem mentioned
in (ii) is solved. Furthermore, the FLSs are used to
approximate the uncertainties and disturbances and
provide real-time compensations for the system.

The paper is organized as follows: in Section 2, the
high-order human-robot model is introduced based on the
linearized models of human leg and exoskeleton. Then the
reference trajectory of hip-joint is obtained through exper-
iments. In Section 3, considering the demands of controller
design, a model in state space form with uncertainties and
disturbances is obtained. Based on that work, the human-
robot controller is designed with a command filter adaptive
backstepping sliding mode and, by utilizing the Lyapunov
theory, closed-loop system stability is analyzed. Simulation
results are discussed in Section 4 and the conclusions are
provided in Section 5.

2. System Modeling and Trajectory Generation

2.1. Dynamics of the Human-Robot System. As shown in
Figure 1, the human-robot system can be expressed as a
person wearing a lower-limb exoskeleton which provides a
back support to assist hip-joint motion. By passing the leg’s
gravity to the waist, the muscle effort needed for human
walking could be reduced to a low level.

In order to describe the system, an elementary model
is used in this paper which consists of linearized one-
degree-of-freedom (1-DOF) models for the human leg and
the exoskeleton. In the process of modeling the physical
interaction between the human and exoskeleton, a coupling
torque, expressed as combination of a linear spring and a
damper, is introduced.

Then, the ideal dynamics of the human-robot system are
given as follows [19]:

𝐼ℎ ̈𝜃ℎ (𝑡) + 𝑏ℎ ̇𝜃ℎ (𝑡) + 𝑘ℎ𝜃ℎ (𝑡) = 𝜏ℎ (𝑡) − 𝜏𝑐 (𝑡)
𝐼𝑒 ̈𝜃𝑒 (𝑡) + 𝑏𝑒 ̇𝜃𝑒 (𝑡) + 𝑘𝑒𝜃𝑒 (𝑡) = 𝜏𝑒 (𝑡) + 𝜏𝑐 (𝑡) , (1)

Figure 1: 1-DOF lower-limb exoskeleton.

Figure 2: Vicon motion capture system.

where 𝐼ℎ, 𝑏ℎ, 𝑘ℎ are, respectively, the moment of inertia,
joint damping coefficient, and joint stiffness coefficient of
the human leg; 𝜃ℎ(𝑡) is the hip-joint angle; 𝜏ℎ(𝑡) is the net
muscle torque acting on the joint. 𝐼𝑒, 𝑏𝑒, 𝑘𝑒 are, respectively,
the moment of inertia, joint damping coefficient, and joint
stiffness coefficient of the exoskeleton; 𝜃𝑒(𝑡) is the exoskeleton
joint angle; 𝜏𝑒(𝑡) is the actuator torque.

And the coupling torque is defined as follows:

𝑏𝑐 ( ̇𝜃ℎ (𝑡) − ̇𝜃𝑒 (𝑡)) + 𝑘𝑐 (𝜃ℎ (𝑡) − 𝜃𝑒 (𝑡)) = 𝜏𝑐 (𝑡) , (2)

where 𝑏𝑐, 𝑘𝑐 are, respectively, the equivalent damping coeffi-
cient and stiffness coefficient of the interaction torque; 𝜏𝑐 is
the coupling torque.

2.2. Trajectory Generation. The main way that the exoskele-
ton helps human complete the locomotion is tracking the
human gait cycle. So a reasonable desired position trajectory
is an essential factor for testing the model and controller.
An experimenter (girl aged 25 years with mass of 52 kg
and stature of 165 cm) volunteered to participate in the
gait experiment with Vicon motion capture system, device
provided by National Research Center for Rehabilitation
Technical Aids (Figure 2).

Special trackers are fixed at the particular marks on the
experimenter which can be captured by cameras distributed
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Table 1: Parameter identification of the hip joint trajectory.

𝜃0 9.50 (9.46, 9.55)𝑎1 −18.74 (−18.8, −18.7)𝑎2 1.957 (1.9, 2.0)𝑎3 0.7747 (0.72, 0.83)𝑤𝑛 3.775 (3.772, 3.778)𝑏1 −8.97 (−9.0, −8.9)𝑏2 −5.026 (−5.09, −4.96)𝑏3 0.9843 (0.93, 1.04)
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Figure 3: The actual hip-joint trajectory obtained by experiment.

in reasonable location in experiment space. The information
from different cameras are combined, and the actual hip-
joint angle signals are obtained through data processing.
From the considerable data obtained, the most reliable,
representative, and authentic data is selected and reorganized.
To ensure the smoothness of the trajectory, the Fourier series
is introduced to describe the actual gait cycle. Note that the
human locomotion satisfies the smooth characteristics.

Mathematical expression of the desired trajectory can be
expressed as follows [14]:

𝜃𝑟 = 𝜃0 + 𝑁∑
𝑘=1

(𝑎𝑘 sin (𝑘𝑤𝑛𝑡) + 𝑏𝑘 cos (𝑘𝑤𝑛𝑡)) , (3)

where 𝜃0 is the initial value of 𝜃2; 𝑎𝑘 and 𝑏𝑘 are the sine and
cosine amplitudes of Fourier series; 𝑤𝑛 is the fundamental
frequency; 𝑘 is the harmonic order.

The parameters of the trajectory are obtained by the curve
fit toolbox of MATLAB. In order to approximate the actual
curve and simplify the calculation process, fundamental
frequency to third harmonics, that is, 𝑘 = 3 in (3), of
the Fourier series is used in this paper. The parameters are
illustrated in Table 1.

According to (3) and the parameters given in Table 1,
a reliable hip-joint trajectory (expressed as 𝑥1𝑑) can be
obtained and shown in Figure 3.

The control objectives for the human-robot system are
illustrated as follows:

(i) An adaptive controller for high-order human-robot
system is designed, such that the position of human
leg 𝑥1 and exoskeleton 𝑥3 can track the actual trajec-
tory 𝑥1𝑑 obtained from experiment.

(ii) The prescribed output tracking error 𝑥1 = 𝑥1 − 𝑥1𝑐
is always bounded. Besides when uncertainties and
disturbances exist in the system, the tracking error
can converge to a neighborhood of the origin in a
short time.

3. Controller Design

3.1. System Description and Control Strategy. For the
exoskeleton, the human leg is a passive part and fulfills the
locomotion with the interaction torque between the human
and robot. For the dynamics shown in (1), when replacing 𝜏𝑐
with (2), the system is given by

𝐼ℎ ̈𝜃ℎ + (𝑏ℎ + 𝑏𝑐) ̇𝜃ℎ + (𝑘ℎ + 𝑘𝑐) 𝜃ℎ − 𝑏𝑐 ̇𝜃𝑒 − 𝑘𝑐𝜃𝑒 = 𝜏ℎ
𝐼𝑒 ̈𝜃𝑒 + (𝑏𝑒 + 𝑏𝑐) ̇𝜃𝑒 + (𝑘𝑒 + 𝑘𝑐) 𝜃𝑒 − 𝑏𝑐 ̇𝜃ℎ − 𝑘𝑐𝜃ℎ = 𝜏𝑒. (4)

Note that all the states and the torques are time-varying
variables and time flags are omitted for convenience.

Taking the lump uncertainties, parametric/unmodeled
uncertainties as well as the external disturbances, into
account, (4) can be transformed into state space as

𝑥̇1 = 𝑥2
𝑥̇2

= 𝐼−1ℎ [𝜏ℎ − (𝑘𝑐 + 𝑘ℎ) 𝑥1 − (𝑏𝑐 + 𝑏ℎ) 𝑥2 + 𝑘𝑐𝑥3 + 𝑏𝑐𝑥4]
+ Δ 1

𝑥̇3 = 𝑥4
𝑥̇4

= 𝐼−1𝑒 [𝜏𝑒 + 𝑘𝑐𝑥1 + 𝑏𝑐𝑥2 − (𝑘𝑐 + 𝑘𝑒) 𝑥3 − (𝑏𝑐 + 𝑏𝑒) 𝑥4]
+ Δ 2,

(5)

where 𝑥1 = 𝜃ℎ, 𝑥2 = ̇𝜃ℎ, 𝑥3 = 𝜃𝑒, 𝑥4 = ̇𝜃𝑒 are the state vector
of the system; the lump uncertainties in human-robot system
are

Δ 1 = 𝐼−1ℎ (−Δ (𝑘𝑐 + 𝑘ℎ) 𝑥1 − Δ (𝑏𝑐 + 𝑏ℎ) 𝑥2 + Δ𝑘𝑐𝑥3
+ Δ𝑏𝑐𝑥4) + 𝑑1

Δ 2 = 𝐼−1𝑒 (Δ𝑘𝑐𝑥1 + Δ𝑏𝑐𝑥2 − Δ (𝑘𝑐 + 𝑘𝑒) 𝑥3
− Δ (𝑏𝑐 + 𝑏𝑒) 𝑥4) + 𝑑2.

(6)

Note that the specific parameters of human leg are
hard to be measured and the actuator of the exoskeleton
includes mechanical errors which cannot be described pre-
cisely. Hence, the uncertainties of the system existed and are
inevitable.
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Considering that the system has high-order features, a
backstepping slidingmodelmethod is introduced to solve the
complex problem with a recursive form [27]. To avoid the
“explosion of complexity” in the controller design process,
a second-order nonlinear command filter is employed in
this paper. The command filter ensures that the desired
command and its derivative satisfy the same magnitude and
rate constrains [24].

In order to handle the system chattering problem caused
by the uncertainties and disturbances, fuzzy logic systems
(FLSs) are equipped to estimate the upper bounds of the lump
uncertainties. FLSs provide real-time compensations for the
human-robot system to reduce the switching items of the
sliding model control.

Being equipped with second-order command filter and
FLSs, a backstepping sliding mode control strategy for the
human-robot system with uncertainties and disturbances is
proposed in this paper.

3.2. Basic Assumptions and FLS. Some reasonable and useful
assumptions are given at first which ensure the stability of the
system.

Assumption 1. There exist constants 𝑐1, 𝑐2 > 0, such that the
inequality |Δ 1| < 𝑐1, |Δ 2| < 𝑐2 holds.
Assumption 2 (Lipschitz). For ∀𝑥1, 𝑥2 ∈ 𝑅𝑛, ∃𝐿 ∈ 𝑅+, the
inequality holds as follows:

󵄨󵄨󵄨󵄨𝐹 (𝑥1) − 𝐹 (𝑥2)󵄨󵄨󵄨󵄨 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥1 − 𝑥2󵄩󵄩󵄩󵄩 , (7)

where ‖𝑥1−𝑥2‖ represents the 2-normof (𝑥1−𝑥2). And all the
desired commands 𝑥𝑖𝑑, 𝑥̇𝑖𝑑 (𝑖 = 1, 2, 3, 4) satisfy the Lipschitz
continuity.

The design of the FLS consists of two steps. First, the fuzzy
rule base should be made up as follows:

𝑅𝑙: if 𝑥1 is 𝐴𝑙1 and 𝑥2 is 𝐴𝑙2 and. . .and 𝑥𝑛 is 𝐴𝑙𝑛
then 𝑓(𝑥) is 𝐵𝑙,

where 𝐴𝑙𝑖 and 𝐵𝑙 are fuzzy sets in 𝑅, 𝑙 = 1, 2, . . . , 𝑁; 𝑖 =1, 2, . . . , 𝑛.
The second step is defuzzification. Center average

defuzzification operator is applied in this paper which can be
expressed as

𝑓 (𝑥) = ∑𝑁𝑙=1 𝑓𝑙∏𝑛𝑖=1𝑢𝐴𝑙
𝑖

(𝑥𝑖)
∑𝑁𝑙=1 [∏𝑛𝑖=1𝑢𝐴𝑙

𝑖

(𝑥𝑖)] , (8)

where 𝑓𝑙 = max𝑓∈𝑅 𝑢𝐵𝑙(𝑓), and 𝑢𝐴𝑙
𝑖

(𝑥𝑖), 𝑢𝐵𝑙 are the member-
ship functions.

Define the fuzzy basis vector as

𝜑 (𝑥) = ∏𝑛𝑖=1𝑢𝐴𝑙
𝑖

(𝑥𝑖)
∑𝑁𝑙=1 [∏𝑛𝑖=1𝑢𝐴𝑙

𝑖

(𝑥𝑖)] . (9)

Denote 𝜃𝑇 = [𝑓1, 𝑓2, . . . , 𝑓𝑁] and 𝜑(𝑥) = [𝜑1(𝑥),𝜑2(𝑥), . . . , 𝜑𝑛(𝑥)]𝑇; then the FLS can be expressed as

𝑓 (𝑥) = 𝜃𝑇𝜑 (𝑥) . (10)

The optimal parameter 𝜃∗𝑇 can be defined by

𝜃∗𝑇 = argmin
𝜃∈𝑅𝑛

{sup
𝑥∈𝑅𝑛

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝜃∗𝑇𝜑 (𝑥)󵄨󵄨󵄨󵄨󵄨} . (11)

Lemma 3 (Wang [28]). For ∀𝑓(𝑥), which is continuous
function and defined over a compact Ω, for any a constant𝜀 ∈ 𝑅+, there exist an FLS and a parameter 𝜃∗ such that

sup
𝑥∈Ω

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝜃∗𝑇𝜑 (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀. (12)

3.3. Controller Design. Consider the characteristics of the
human-robot system, a backstepping sliding model control
with second-order command filter is proposed in this paper.
The controller design process is shown in this section.

The output tracking errors and compensated tracking
errors of the subsystems are defined, respectively, as

𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖𝑐, 𝑖 = 1, 2, 3, 4.
𝑧𝑖 = 𝑥𝑖 − 𝜉𝑖, 𝑖 = 1, 2, 3, 4, (13)

where 𝑥𝑖 and 𝑥𝑖𝑐 represent the system states and filtered
commands of the 𝑖th subsystem, respectively.

The 𝜉𝑖 (𝑖 = 1, 2, 3, 4) signals can be obtained by

̇𝜉1 = −𝑘1𝜉1 + (𝑥2𝑐 − 𝑥2𝑑) + 𝜉2
̇𝜉2 = −𝑘2𝜉2 + 𝐼−1ℎ 𝑘𝑐 (𝑥3𝑐 − 𝑥3𝑑) + 𝐼−1ℎ 𝑘𝑐𝜉3
̇𝜉3 = −𝑘3𝜉3 + (𝑥4𝑐 − 𝑥4𝑑) + 𝜉4
̇𝜉4 = −𝑘4𝜉4 + 𝐼−1𝑒 (𝜏𝑒𝑐 − 𝜏𝑒𝑑)

(14)

with 𝜉𝑖(0) = 0.
Remark 4. Equation (14) is used to achieve the filtering value𝜉𝑖 which are designed to compensate the errors caused by
the command filters. Note that they can be computed with
integrating processes to avoid the differential operations.

For the purpose of eliminating the “explosion of complex-
ity,” a second-order nonlinear command filter is designed to
calculate 𝑥𝑖𝑐, 𝑥̇𝑖𝑐. So the command filter is shown as follows:

[ ̇𝑟𝑖,1̇𝑟𝑖,2] = [ 𝑟𝑖,2
−2𝜁𝜔𝑛𝑟𝑖,2 − 𝜔2𝑛 (𝑟𝑖,1 − 𝑥𝑖𝑑)]

[𝑥𝑖𝑐𝑥̇𝑖𝑐] = [𝑟𝑖,1𝑟𝑖,2] ,
(15)

where 𝜔𝑛 is the natural frequency of the filter and typically
satisfies 𝜔𝑛 > 𝑘𝑖, 𝑖 = (1, 2, 3, 4) to ensure the tracking
accuracy. 𝜁 ∈ (0, 1] is the damping ratio of the filter system.
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𝑥𝑖𝑑, (𝑖 = 2, 3, 4) are the virtual control signals and 𝑥1𝑑 is the
desired trajectory.

The filter initial conditions are 𝑥𝑖𝑐(0) = 0, 𝑥̇𝑖𝑐(0) = 0.
Every command filter is designed to compute the filtered
commands without differential operation. Furthermore, 𝑥𝑖𝑐
will track 𝑥𝑖𝑑 by choosing the suitable parameters.

In order to find the optimal parameters of the FLSs, the
adaptive laws are chosen for 𝜃1 and 𝜃2 as follows:

̇̂𝜃1 = 𝛾1𝑧2𝜑1
̇̂𝜃2 = 𝛾2𝑧4𝜑2,

(16)

where 𝛾1, 𝛾2 are the positive adaptive coefficients.
Considering the compensating errors and the closed-loop

dynamics, the virtual law can be defined as follows:

𝑥2𝑑 = −𝑘1𝑥1 + 𝑥̇1𝑐 (17)

𝑥3𝑑 = 𝑘−1𝑐 [𝐼ℎ (−𝑘2𝑥2 − 𝑧1 + 𝑥̇2𝑐 − 𝜃𝑇1 𝜑1 − 𝜂1sats (𝑧2))
− 𝜏ℎ + (𝑘𝑐 + 𝑘ℎ) 𝑥1 + (𝑏𝑐 + 𝑏ℎ) 𝑥2 − 𝑏𝑐𝑥4] (18)

𝑥4𝑑 = −𝑘3𝑥3 − 𝑘𝑐𝐼−1ℎ 𝑧2 + 𝑥̇3𝑐 (19)

𝜏𝑒𝑑 = 𝐼𝑒 [−𝑘4𝑥4 + 𝑥̇4 − 𝑧3 − 𝜃𝑇2 𝜑2 − 𝜂2sats (𝑧4)]
− 𝑘𝑐𝑥1 − 𝑏𝑐𝑥2 + (𝑘𝑐 + 𝑘𝑒) 𝑥3 + (𝑏𝑐 + 𝑏𝑒) 𝑥4, (20)

where 𝜃1, 𝜃2 are the estimated values of optimal parameters
and 𝜑1, 𝜑2 are the basis vectors of FLSs. 𝑘𝑖 > 0, (𝑖 = 1, 2, 3, 4)
are control gains specified by the designer. 𝜂1, 𝜂2 are constants
that ensure that the inequality 𝜂1 > |𝜀1|, 𝜂2 > |𝜀2| holds.

The sats(𝑥) is the switching function that satisfies

sats (𝑥) =
{{{{{{{{{

1, 𝑥 > 𝑥Δ
𝑘𝑥, |𝑥| ≤ 𝑥Δ
−1, 𝑥 < −𝑥Δ.

(21)

3.4. Stability Analysis

Theorem5. For the system illustrated in (5), there exist a range
of values for the gains 𝑘1, 𝑘2, 𝑘3, 𝑘4, and the adaptive coefficients𝛾1, 𝛾2, such that the tracking error 𝑥1 and compensation errors𝑧𝑖 (𝑖 = 1, 2, 3, 4) can converge to zero with the compensations
provided by FLSs.

Proof. The tracking error 𝑥𝑖 and the compensated tracking
error 𝑧𝑖 are given first.

̇̃𝑥1 = 𝑥̇1 − 𝑥̇1𝑐 = 𝑥2 − 𝑥2𝑐 + 𝑥2𝑐 − 𝑥2𝑑 + 𝑥2𝑑 − 𝑥̇1𝑐
= 𝑥2 + (𝑥2𝑐 − 𝑥2𝑑) + 𝑥2𝑑 − 𝑥̇1𝑐 = −𝑘1𝑥1 + 𝑥2
+ (𝑥2𝑐 − 𝑥2𝑑)

̇̃𝑥2 = 𝑥̇2 − 𝑥̇2𝑐 = 𝐼−1ℎ [𝜏ℎ − (𝑘𝑐 + 𝑘ℎ) 𝑥1 − (𝑏𝑐 + 𝑏ℎ) 𝑥2
+ 𝑘𝑐 (𝑥3 − 𝑥3𝑐 + 𝑥3𝑐 − 𝑥3𝑑 + 𝑥3𝑑) 𝑏𝑐𝑥4] + Δ 1 − 𝑥̇2𝑐
= 𝐼−1ℎ [𝜏ℎ − (𝑘𝑐 + 𝑘ℎ) 𝑥1 − (𝑏𝑐 + 𝑏ℎ) 𝑥2 + 𝑘𝑐𝑥3𝑑
+ 𝑘𝑐𝑥3 + 𝑏𝑐𝑥4] + Δ 1 + 𝐼−1ℎ 𝑘𝑐 (𝑥3𝑐 − 𝑥3𝑑) − 𝑥̇2𝑐
= −𝑘2𝑥2 − 𝑧1 + 𝐼−1ℎ 𝑘𝑐𝑥3 + 𝐼−1ℎ 𝑘𝑐 (𝑥3𝑐 − 𝑥3𝑑)
+ 𝜃𝑇1 𝜑1 + 𝜀1 − 𝜂1sats (𝑧2)

̇̃𝑥3 = 𝑥̇3 − 𝑥̇3𝑐 = 𝑥4 − 𝑥4𝑐 + 𝑥4𝑐 − 𝑥4𝑑 + 𝑥4𝑑 − 𝑥̇3𝑐
= 𝑥4 + (𝑥4𝑐 − 𝑥4𝑑) + 𝑥4𝑑 − 𝑥̇3𝑐 = −𝑘3𝑥3 + 𝑥4
+ (𝑥4𝑐 − 𝑥4𝑑) − 𝑘𝑐𝐼−1ℎ 𝑧2

̇̃𝑥4 = 𝑥̇4 − 𝑥̇3𝑐 = 𝐼−1𝑒 [𝜏𝑒 − 𝜏𝑒𝑐 + 𝜏𝑒𝑐 − 𝜏𝑒𝑑 + 𝜏𝑒𝑑 + 𝑘𝑐𝑥1
+ 𝑏𝑐𝑥2 − (𝑘𝑐 + 𝑘𝑒) 𝑥3 − (𝑏𝑐 + 𝑏𝑒) 𝑥4] + Δ 2 − 𝑥̇3𝑐
= 𝐼−1𝑒 [𝜏𝑒 − (𝜏𝑒𝑐 − 𝜏𝑒𝑑) + 𝜏𝑒𝑑 + 𝑘𝑐𝑥1 + 𝑏𝑐𝑥2
− (𝑘𝑐 + 𝑘𝑒) 𝑥3 − (𝑏𝑐 + 𝑏𝑒) 𝑥4] + Δ 2 − 𝑥̇3𝑐 = −𝑘4𝑥4
− 𝑧3 + 𝐼−1𝑒 [𝜏𝑒 − (𝜏𝑒𝑐 − 𝜏𝑒𝑑)] + 𝜃𝑇2 𝜑2 + 𝜀2
− 𝜂2sats (𝑧4) .

(22)

Due to the fact that 𝑧𝑖 = 𝑥𝑖 − 𝜉𝑖 for 𝑖 = 1, 2, 3, 4, the
dynamics of compensated tracking error can be expressed as
follows:

𝑧̇1 = ̇̃𝑥1 − ̇𝜉1
= −𝑘1𝑥1 + 𝑥2 + (𝑥2𝑐 − 𝑥2𝑑)

− [−𝑘1𝜉1 + (𝑥2𝑐 − 𝑥2𝑑) + 𝜉2] = −𝑘1𝑧1 + 𝑧2
𝑧̇2 = ̇̃𝑥2 − ̇𝜉2

= −𝑘2𝑥2 − 𝑧1 + 𝐼−1ℎ 𝑘𝑐𝑥3 + 𝐼−1ℎ 𝑘𝑐 (𝑥3𝑐 − 𝑥3𝑑) + 𝜃𝑇1 𝜑
+ 𝜀1 − 𝜂1sats (𝑧2)
− [−𝑘2𝜉2 + 𝐼−1ℎ 𝑘𝑐 (𝑥3𝑐 − 𝑥3𝑑) + 𝐼−1ℎ 𝑘𝑐𝜉3]

= −𝑘2𝑧2 − 𝑧1 + 𝐼−1ℎ 𝑘𝑐𝑧3 + 𝜃𝑇1 𝜑 + 𝜀1 − 𝜂1sats (𝑧2)
𝑧̇3 = ̇̃𝑥3 − ̇𝜉3

= −𝑘3𝑥3 + 𝑥4 + (𝑥4𝑐 − 𝑥4𝑑) − 𝑘𝑐𝐼−1ℎ 𝑧2
− [−𝑘3𝜉3 + (𝑥4𝑐 − 𝑥4𝑑) + 𝜉4]

= −𝑘3𝑧3 + 𝑧4 − 𝑘𝑐𝐼−1ℎ 𝑧2
𝑧̇4 = ̇̃𝑥4 − ̇𝜉4

= −𝑘4𝑥4 − 𝑧3 + 𝐼−1𝑒 (𝜏𝑒 − (𝜏𝑒𝑐 − 𝜏𝑒𝑑)) + 𝜃𝑇2 𝜑2 + 𝜀2
− 𝜂2sats (𝑧4) − [−𝑘4𝜉4 + 𝐼−1𝑒 (𝜏𝑒𝑐 − 𝜏𝑒𝑑)]

= −𝑘4𝑧4 − 𝑧3 + 𝜃𝑇2 𝜑2 + 𝜀2 − 𝜂2sats (𝑧4) + 𝐼−1𝑒 𝜏𝑒,

(23)

where 𝜃1 = 𝜃∗1 − 𝜃1 and 𝜃2 = 𝜃∗2 − 𝜃2.
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Remark 6. Note the fact that the command 𝜏𝑒𝑐 will directly
output to control plant, so the conclusion is easily obtained
that 𝜏𝑒 = 𝜏𝑒𝑐.

Then, define the control Lyapunov function for the
closed-loop system as

𝑉 (𝑡) = 12 ( 4∑
𝑖=1

𝑧2𝑖 + 𝛾−11 𝜃𝑇1 𝜃1 + 𝛾−12 𝜃𝑇2 𝜃2) . (24)

Then the time derivative of the Lyapunov function (24)
becomes

𝑉̇ (𝑡) = 4∑
𝑖=1

𝑧𝑖𝑧̇𝑖 − 𝛾−11 𝜃𝑇1 ̇̂𝜃1 − 𝛾−12 𝜃𝑇2 ̇̂𝜃2. (25)

Substitute 𝑧̇𝑖 with (23):

𝑉̇ (𝑡) = 𝑧1 (−𝑘1𝑧1 + 𝑧2) + 𝑧2 (−𝑘2𝑧2 − 𝑧1 + 𝐼−1ℎ 𝑘𝑐𝑧3
+ 𝜃𝑇1 𝜑 + 𝜀1 − 𝜂1sats (𝑧2)) + 𝑧3 (−𝑘3𝑧3 + 𝑧4
− 𝑘𝑐𝐼−1ℎ 𝑧2) + 𝑧4 (−𝑘4𝑧4 − 𝑧3 + 𝜃𝑇2 𝜑2 + 𝜀2
− 𝜂2sats (𝑧4)) − 𝛾−11 𝜃𝑇1 ̇̂𝜃1 − 𝛾−12 𝜃𝑇2 ̇̂𝜃2.

(26)

The simplification can be written as

𝑉̇ (𝑡) = −𝑘1𝑧21 − 𝑘2𝑧22 − 𝑘3𝑧23 − 𝑘4𝑧24
+ 𝑧2 (𝜃𝑇1 𝜑 + 𝜀1 − 𝜂1sats (𝑧2))
+ 𝑧4 (𝜃𝑇2 𝜑2 + 𝜀2 − 𝜂2sats (𝑧4)) − 𝛾−11 𝜃𝑇1 ̇̂𝜃1
− 𝛾−12 𝜃𝑇2 ̇̂𝜃2.

(27)

Replace ̇̂𝜃1, ̇̂𝜃2 with the adaptive law (16)

𝑉̇ (𝑡) = −𝑘1𝑧21 − 𝑘2𝑧22 − 𝑘3𝑧23 − 𝑘4𝑧24
+ 𝑧2 (𝜀1 − 𝜂1sats (𝑧2)) + 𝑧4 (𝜀2 − 𝜂2sats (𝑧4))

≤ −𝑘1𝑧21 − 𝑘2𝑧22 − 𝑘3𝑧23 − 𝑘4𝑧24 + 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 (𝜀1 − 𝜂1)
+ 󵄨󵄨󵄨󵄨𝑧4󵄨󵄨󵄨󵄨 (𝜀2 − 𝜂2) .

(28)

Let 𝜂1 > |𝜀1|, 𝜂2 > |𝜀2|; define the tracking error vector as𝑧 = [𝑧1, 𝑧2, 𝑧3, 𝑧4]; then
𝑉̇ (𝑡) ≤ −𝑘1𝑧21 − 𝑘2𝑧22 − 𝑘3𝑧23 − 𝑘4𝑧24 ≤ −𝑘min ‖𝑧‖2 , (29)

where 𝑘min = min{𝑘1, 𝑘2, 𝑘3, 𝑘4}. According to (29), the error
vector 𝑧 is uniformly bounded, and lim𝑡→∞𝑉(𝑡) = 𝑉(∞).
When integrating both sides of inequality (29), then

𝑉 (∞) − 𝑉 (0) ≤ −𝑘min ∫∞
0

‖𝑧‖2 𝑑𝑡. (30)

That is

𝑘min ∫∞
0

‖𝑧‖2 𝑑𝑡 ≤ 𝑉 (0) − 𝑉 (∞) . (31)

Table 2: Parameters of the human-robot system.

PARM Value
𝐼𝑒 0.01178 kgm2𝑏𝑒 0.345Nms/rad𝑘𝑒 0.339Nm/rad𝐼ℎ 3.38 kgm2𝑏ℎ 3.5Nms/rad𝑘ℎ 54.7Nm/rad𝑏𝑐 9.47Nms/rad𝑘𝑐 1905Nm/rad

Table 3: The parameters of the controller.

PARM Value𝑘1 50𝑘2 50𝑘3 50𝑘4 50𝜂1 0.05𝜂2 0.05𝛾1 150𝛾2 30𝑤𝑛 500𝜍 0.9

According to Barbalat Lemma proposed in [29], when the
time variable 𝑡 tends to infinity, the error vector 𝑧 tends to
zero.

The block diagram of controller design is shown in
Figure 4.

4. Simulation Results

In this section, a simulation of an 1-DOF lower-limb exoskele-
ton is established. All the parameters of the 1-DOF exoskele-
ton are illustrated in Table 2.

The PARM is short for parameter, and the notation is
omitted for convenience through the paper as long as special
notation is not required.

Remark 7. All the parameters are cited in [19]. The parame-
ters, just for calculating, are obtained from real experiment
and useful for controller simulation.

The lump uncertainties are chosen as follows:

Δ𝑘𝑐𝑘𝑐 = Δ𝑏𝑐𝑏𝑐 = Δ𝑘ℎ𝑘ℎ = Δ𝑏ℎ𝑏ℎ = 0.1,
𝑑1 = 𝑑2 = 0.2 sin (𝑡) .

(32)

To ensure the stability of the system, the specific parame-
ters of the controller are tuned in a trial-and-error procedure
and shown in Table 3.

The simulation results are given in Figures 5–10. It
can be seen that the controller designed can guarantee the
uncertainties and external disturbances.
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Figure 4: Block diagram of the controller design. (CF represents the command filter defined by (15); VCL represents the virtual control law
of the four subsystems defined by (17)–(20); FLS represents the fuzzy logic system.)
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Figure 5: Position tracking of human-robot system.

Figures 5 and 6 illustrate the position tracking and the
tracking errors of the human-robot system. In Figure 5, the
desired trajectory 𝑥1𝑑 is represented as solid line, the human
leg position 𝑥1 is shown as dash-dotted line, and the position
of exoskeleton 𝑥3 is described as dashed line. Just as it is
shown, the controlled plant can steadily track the hip curve in
a satisfactory way. Figure 6 shows the errors of the trajectory
tracking. It is easy to get that the proposed command filtered
fuzzy adaptive backstepping controller could make the errors

x1 − x1c

x1 − x1d

−0.2

−0.1

0.0

0.1

0.2

Er
ro

r (
ra

d)

1 2 3 4 50

Time (s)

Figure 6: Tracking errors of human-robot system.

finally kept in the neighborhood of the origin from the figure.
However there are still differences between the two errors
because of the filtered errors.

Figures 7 and 8 show the virtual control signals 𝑥𝑖𝑑 as
solid line and the filtered commands 𝑥𝑖𝑐, which are produced
by passing the virtual control signals through the second-
order filter, as the dashed line. As expected, the control signals
of all the subsystems are smooth and bounded. Moreover,
the virtual control signals and the corresponding filtered
commands satisfy the same magnitude, rate, and bandwidth
constrains, which is different from the traditional first-order
linear filter. The closed-loop tracking errors could converge
to a tiny range around the origin in a very short time (about
0.1 s) just as shown in Figure 9.

Figure 10 illustrates the system’s lump uncertainties and
estimated values obtained by FLSs. The lump uncertaintiesΔ 1, Δ 2 are expressed as solid lines and the estimates Δ 𝑒1, Δ 𝑒2
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Figure 9: Compensated tracking error.

are represented as dashed lines. It can be seen that the
estimated value (dash) reaching the real value (solid) in less
than 0.2 s. Therefrom, upper bounds of the switch terms in
sliding model control could be much smaller because of the
compensations provided by FLSs.

All the signals remain bounded in a reasonable range
during the process. Obviously, the proposed control strategy
with command filters and FLSs can be a suitable method for
lower-limb exoskeleton.

5. Conclusion

A human-robot cooperative control strategy based on a
convincing high-order model is proposed for a lower-limb
assisting exoskeleton. A second-order command filter back-
stepping method is employed to determine the time deriva-
tives of virtual control signals without differential operations.
The FLSs are used to approximate the uncertainties and
disturbances and compensate the system timely. In addition,
the stability of the system is proved based on the Lyapunov
theory. Finally, simulation results are presented to verify the
effectiveness of the proposed command filter adaptive fuzzy
control strategy.

Future work will focus on the performance of the control
strategy in actual experiment and the filtering errors should
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Figure 10: The estimate of the uncertainties and disturbances with
the FLSs.

be proved to converge rigorously. Besides, further research on
the state constrain control for high-order nonlinear systems
[30] is also needed.
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