875,102 research outputs found

    Schwarz Symmetrization and Comparison Results for Nonlinear Elliptic Equations and Eigenvalue Problems

    Full text link
    We compare the distribution function and the maximum of solutions of nonlinear elliptic equations defined in general domains with solutions of similar problems defined in a ball using Schwarz symmetrization. As an application, we prove the existence and bound of solutions for some nonlinear equation. Moreover, for some nonlinear problems, we show that if the first pp-eigenvalue of a domain is big, the supremum of a solution related to this domain is close to zero. For that we obtain LL^{\infty} estimates for solutions of nonlinear and eigenvalue problems in terms of other LpL^p norms

    Nonlinear second-order multivalued boundary value problems

    Get PDF
    In this paper we study nonlinear second-order differential inclusions involving the ordinary vector pp-Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain solutions for both the `convex' and `nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.Comment: 26 page

    H∞ control of nonlinear systems: a convex characterization

    Get PDF
    The nonlinear H∞-control problem is considered with an emphasis on developing machinery with promising computational properties. The solutions to H∞-control problems for a class of nonlinear systems are characterized in terms of nonlinear matrix inequalities which result in convex problems. The computational implications for the characterization are discussed

    Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems

    Get PDF
    If quantum states exhibit small nonlinearities during time evolution, then quantum computers can be used to solve NP-complete problems in polynomial time. We provide algorithms that solve NP-complete and #P oracle problems by exploiting nonlinear quantum logic gates. It is argued that virtually any deterministic nonlinear quantum theory will include such gates, and the method is explicitly demonstrated using the Weinberg model of nonlinear quantum mechanics.Comment: 10 pages, no figures, submitted to Phys. Rev. Let

    Initial-boundary value problems for discrete evolution equations: discrete linear Schrodinger and integrable discrete nonlinear Schrodinger equations

    Full text link
    We present a method to solve initial-boundary value problems for linear and integrable nonlinear differential-difference evolution equations. The method is the discrete version of the one developed by A. S. Fokas to solve initial-boundary value problems for linear and integrable nonlinear partial differential equations via an extension of the inverse scattering transform. The method takes advantage of the Lax pair formulation for both linear and nonlinear equations, and is based on the simultaneous spectral analysis of both parts of the Lax pair. A key role is also played by the global algebraic relation that couples all known and unknown boundary values. Even though additional technical complications arise in discrete problems compared to continuum ones, we show that a similar approach can also solve initial-boundary value problems for linear and integrable nonlinear differential-difference equations. We demonstrate the method by solving initial-boundary value problems for the discrete analogue of both the linear and the nonlinear Schrodinger equations, comparing the solution to those of the corresponding continuum problems. In the linear case we also explicitly discuss Robin-type boundary conditions not solvable by Fourier series. In the nonlinear case we also identify the linearizable boundary conditions, we discuss the elimination of the unknown boundary datum, we obtain explicitly the linear and continuum limit of the solution, and we write down the soliton solutions.Comment: 41 pages, 3 figures, to appear in Inverse Problem

    Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations

    Full text link
    Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of problems involving nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a discrete approximation of its solution. In a second step we apply maximum entropy estimation (using moments of a Borel measure associated with the discrete solution) to obtain a smooth closed-form approximation. The approach is illustrated on a variety of linear and nonlinear ordinary differential equations (ODE), partial differential equations (PDE) and optimal control problems (OCP), and preliminary numerical results are reported
    corecore