2,198 research outputs found

    Computer simulation of a pilot in V/STOL aircraft control loops

    Get PDF
    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable

    Study, definition and analysis of pilot/system performance measurements for planetary entry experiments

    Get PDF
    Definition analysis for experimental prediction of pilot performance during planetary entr

    Longitudinal-control design approach for high-angle-of-attack aircraft

    Get PDF
    This paper describes a control synthesis methodology that emphasizes a variable-gain output feedback technique that is applied to the longitudinal channel of a high-angle-of-attack aircraft. The aircraft is a modified F/A-18 aircraft with thrust-vectored controls. The flight regime covers a range up to a Mach number of 0.7; an altitude range from 15,000 to 35,000 ft; and an angle-of-attack (alpha) range up to 70 deg, which is deep into the poststall region. A brief overview is given of the variable-gain mathematical formulation as well as a description of the discrete control structure used for the feedback controller. This paper also presents an approximate design procedure with relationships for the optimal weights for the selected feedback control structure. These weights are selected to meet control design guidelines for high-alpha flight controls. Those guidelines that apply to the longitudinal-control design are also summarized. A unique approach is presented for the feed-forward command generator to obtain smooth transitions between load factor and alpha commands. Finally, representative linear analysis results and nonlinear batch simulation results are provided

    Control integration concept for hypersonic cruise-turn maneuvers

    Get PDF
    Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle

    Investigation of air transportation technology at Princeton University, 1991-1992

    Get PDF
    The Air Transportation Research Program at Princeton University proceeded along six avenues during the past year: (1) intelligent flight control; (2) computer-aided control system design; (3) neural networks for flight control; (4) stochastic robustness of flight control systems; (5) microburst hazards to aircraft; and (6) fundamental dynamics of atmospheric flight. This research has resulted in a number of publications, including archival papers and conference papers. An annotated bibliography of publications that appeared between June 1991 and June 1992 appears at the end of this report. The research that these papers describe was supported in whole or in part by the Joint University Program, including work that was completed prior to the reporting period

    Aeronautical engineering: A special bibliography with indexes, supplement 80

    Get PDF
    This bibliography lists 277 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1977

    From Rousettus aegyptiacus (bat) Landing to Robotic Landing: Regulation of CG-CP Distance Using a Nonlinear Closed-Loop Feedback

    Get PDF
    Bats are unique in that they can achieve unrivaled agile maneuvers due to their functionally versatile wing conformations. Among these maneuvers, roosting (landing) has captured attentions because bats perform this acrobatic maneuver with a great composure. This work attempts to reconstruct bat landing maneuvers with a Micro Aerial Vehicle (MAV) called Allice. Allice is capable of adjusting the position of its Center of Gravity (CG) with respect to the Center of Pressure (CP) using a nonlinear closed-loop feedback. This nonlinear control law, which is based on the method of input-output feedback linearization, enables attitude regulations through variations in CG-CP distance. To design the model-based nonlinear controller, the Newton-Euler dynamic model of the robot is considered, in which the aerodynamic coefficients of lift and drag are obtained experimentally. The performance of the proposed control architecture is validated by conducting several experiments

    Aircraft Loss-of-Control: Analysis and Requirements for Future Safety-Critical Systems and Their Validation

    Get PDF
    Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex, resulting from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper summarizes recent analysis results in identifying worst-case combinations of loss-of-control accident precursors and their time sequences, a holistic approach to preventing loss-of-control accidents in the future, and key requirements for validating the associated technologies

    Application of Robust Control Design Techniques to the Aeroservoelastic Design Optimization of a Very Flexible UAV Wing

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83662/1/AIAA-2010-9123-917.pd
    • …
    corecore