100,632 research outputs found

    Comparisons of nonlinear estimators for wastewater treatment plants

    Get PDF
    This paper deals with five existing nonlinear estimators (filters), which include Extended Kalman Filter (EKF), Extended H-infinity Filter (EHF), State Dependent Filter (SDF), State Dependent H-Infinity Filter (SDHF) and Unscented Kalman Filter (UKF) that are formulated and implemented to estimate unmeasured states of a typical biological wastewater system. The performance of these five estimators of different complexities, behaviour and advantages are demonstrated and compared via nonlinear simulations. This study shows promising application of UKF for monitoring and control of the process variables, which are not directly measurable

    Robust stabilization of the Space Station

    Get PDF
    A robust H-infinity control design methodology and its application to a Space Station Freedom (SSF) attitude and momentum control problem are presented. This approach incorporates nonlinear multi-parameter variations in the state-space formulation of H-infinity control theory. An application of this robust H-infinity control synthesis technique to the SSF control problem yields remarkable results in stability robustness with respect to moments of inertia variation of about 73 percent in one of the structured uncertainty directions. The performance and stability of this robust H-infinity controller for the SSF are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique

    Feedback control laws for highly maneuverable aircraft

    Get PDF
    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law

    Fuzzy H-infinity output feedback control of nonlinear systems under sampled measurements

    Get PDF
    This paper studies the problem of designing an H∞ fuzzy feedback control for a class of nonlinear systems described by a continuous-time fuzzy system model under sampled output measurements. The premise variables of the fuzzy system model are allowed to be unavailable. We develop a technique for designing an H∞ fuzzy feedback control that guarantees the L2 gain from an exogenous input to a controlled output is less than or equal to a prescribed value. A design algorithm for constructing the H∞ fuzzy feedback controller is given

    Nonlinear H_inf -Control of Mechanical Systems under Unilateral Constraints on the Position

    Get PDF
    6 pagesNational audienceThe work focuses on the study of hybrid mechanical systems under unilateral constraints on the position. The problem of robust control of mechanical systems is addressed under unilateral constraints by designing a nonlinear H-infinity -controller developed in the nonsmooth setting, covering impact phenomena. Performance issues of the nonlinear H-infinity-tracking controller are illustrated in a numerical simulation

    Nonlinear state feedback H-infinity-control of mechanical systems under unilateral constraints

    Get PDF
    6 Pages, accepted for the 19th IFAC World Congress, Cape Town, South AfricaThe work focuses on the state feedback synthesis of hybrid mechanical systems under unilateral constraints. The problem of robust control of mechanical systems is addressed under unilateral constraints by designing a nonlinear state feedback H-infinity-controller developed in the hybrid setting, covering impact phenomena. Performance issues of the developed nonlinear H-infinty-tracking controller are illustrated with numerical tests on a seven-link biped robot

    Robust H-infinity sliding mode control for nonlinear stochastic systems with multiple data packet losses

    Get PDF
    This is the post-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2012 John Wiley & SonsIn this paper, an ∞ sliding mode control (SMC) problem is studied for a class of discrete-time nonlinear stochastic systems with multiple data packet losses. The phenomenon of data packet losses, which is assumed to occur in a random way, is taken into consideration in the process of data transmission through both the state-feedback loop and the measurement output. The probability for the data packet loss for each individual state variable is governed by a corresponding individual random variable satisfying a certain probabilistic distribution over the interval [0 1]. The discrete-time system considered is also subject to norm-bounded parameter uncertainties and external nonlinear disturbances, which enter the system state equation in both matched and unmatched ways. A novel stochastic discrete-time switching function is proposed to facilitate the sliding mode controller design. Sufficient conditions are derived by means of the linear matrix inequality (LMI) approach. It is shown that the system dynamics in the specified sliding surface is exponentially stable in the mean square with a prescribed ∞ noise attenuation level if an LMI with an equality constraint is feasible. A discrete-time SMC controller is designed capable of guaranteeing the discrete-time sliding mode reaching condition of the specified sliding surface with probability 1. Finally, a simulation example is given to show the effectiveness of the proposed method.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grant 61028008 and the Alexander von Humboldt Foundation of German

    Quantized H-Infinity control for nonlinear stochastic time-delay systems with missing measurements

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the quantized H∞ control problem is investigated for a class of nonlinear stochastic time-delay network-based systems with probabilistic data missing. A nonlinear stochastic system with state delays is employed to model the networked control systems where the measured output and the input signals are quantized by two logarithmic quantizers, respectively. Moreover, the data missing phenomena are modeled by introducing a diagonal matrix composed of Bernoulli distributed stochastic variables taking values of 1 and 0, which describes that the data from different sensors may be lost with different missing probabilities. Subsequently, a sufficient condition is first derived in virtue of the method of sector-bounded uncertainties, which guarantees that the closed-loop system is stochastically stable and the controlled output satisfies H∞ performance constraint for all nonzero exogenous disturbances under the zero-initial condition. Then, the sufficient condition is decoupled into some inequalities for the convenience of practical verification. Based on that, quantized H∞ controllers are designed successfully for some special classes of nonlinear stochastic time-delay systems by using Matlab linear matrix inequality toolbox. Finally, a numerical simulation example is exploited to show the effectiveness and applicability of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Leverhulme Trust of the U.K., the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61028008, 61134009, 61104125, 60974030, and 61074016, and the Alexander von Humboldt Foundation of Germany
    corecore