
Fuzzy H∞ Output Feedback Control of Nonlinear

Systems Under Sampled Measurements

Sing Kiong Nguang∗

Department of Electrical and Electronic Engineering,

The University of Auckland, Private Bag 92019 Auckland, New Zealand.

Email: sk.nguang@auckland.ac.nz. Fax: (+64 9) 3737461

Peng Shi

Land Operations Division, Defence Science & Technology Organisation,

PO Box 1500, Salisbury SA 5108, Australia.

Email: peng.shi@dsto.defence.gov.au. Fax: (+61 8) 82595055

Abstract

This paper studies the problem of designing an H∞ fuzzy feedback control for a class of

nonlinear systems. A nonlinear systems is first described by a continuous-time fuzzy system

model under sampled output measurements. The premise variables of the fuzzy system model

are allowed to be unavailable. We develop a technique for designing an H∞ fuzzy feedback

control which globally stabilises this class of fuzzy system models. A design algorithm for

constructing the H∞ fuzzy feedback controller is given. A numerical simulation example is

given to show the potential of the proposed techniques.
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1 Introduction

There has been some substantial interest over the past few years in the direct design of digital

controllers using continuous-time performance measures. One of the interesting approaches

is the hybrid optimal H∞ control approach. So far a number of different techniques have been

proposed to provide solutions to the hybrid optimal H∞ control problems. The techniques

include: 1) lifting technique [1, 2, 3, 4] which consists of transforming the original sampled-

data system into an equivalent LTI discrete-time system with infinite-dimensional input-

output signal space. Then L2 induced norm of the sampled-data system is shown to be less

than one if and only if the H∞ norm of this equivalent discrete system is less than one; 2)

descriptor system technique [5] where the system is first represented by a hybrid state space

model and the solution to the H∞ sampled-data problem is then characterised by the solution

of certain associated Hamilton-Jacobi equation; 3) technique based on linear systems with

jumps [6]-[17] which is a direct characterisation of the problem in the similar terms to those

of standard LTI H∞ control problems, and leads to a pair of Riccati equations. Recently,

linear H∞ sampled-data results have been extended to nonlinear systems under sampled

measurement. In [18]-[22], solutions to the nonlinear H∞ sampled-data control problem

have been obtained in terms Hamilton-Jacobi equation (HJE). However, until now, it is still

very difficult to solve for a global solution to the Hamilton-Jacobi equation (HJE).

To design a model-based controller for a given process, a mathematical model which captures

all the relevant characteristics of the process is required. Many practical systems are very

complex, a suitable mathematical model that describes the dynamics of processes is very

difficult, if not impossible to obtain. However, many of these systems can be expressed in

some form of mathematical model locally or as an aggregation of a set of mathematical

models. Based on this idea, Takagi, Sugeno and Kang have proposed a fuzzy inference

system known as the TSK model in fuzzy system literature. For the representative work

on this topic, we refer readers to the papers of [23]-[32]. This modelling approach provides

a powerful tool for modelling complex nonlinear systems. Unlike conventional modelling

where a single model is used to describe the gloabl behavior of a systems, TSK modelling is

essentially a multimodel approach in which simple submodels (typically linear models) are

combined to describe the global behavior of the system.

Typically, a continuous-time Takagi-Sugeno fuzzy dynamic model is locally described by a

set of linear models and is represented by fuzzy IF-THEN rules that have the form

Plant Rule i:

IF ν1(t) is Mi1 and · · · and νϑ(t) is Miϑ THEN
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ẋ(t) = Aix(t) + Biu(t), i = 1, 2, · · · , r

where ν1(t), · · · , νϑ(t) are the premise variables, Mij(j = 1, 2, · · · , ϑ) are fuzzy sets that are

characterised by membership functions, x(t) ∈ <n is the state vector, u(t) ∈ <m is the input,

the matrices Ai and Bi are of appropriate dimensions and r is the number of IF-THEN rules.

Given a pair [x(t) u(t)], by using a singleton fuzzifer, product fuzzy inference and weighted

average defuzzifier, the final state of the fuzzy system is inferred as follows:

ẋ(t) =
∑r

i=1
Ji(ν(t))[Aix(t)+Biu(t)]∑r

i=1
Ji(x(t))

=
∑r

i=1 µi(ν(t))[Aix(t) + Biu(t)]
(1.1)

where Ji(ν(t)) is the weight of each rule and it is calculated as follows:

Ji(ν(t)) =
ϑ∏

j=1

Mij(νj(t)), µi(ν(t)) =
Ji(ν(t))

∑r
i=j Jj(ν(t))

Mij(νj(t)) is the grade of membership of νj(t) in Mij. It is assumed in this paper that

Ji(ν(t)) ≥ 0, i = 1, 2, · · · , r;
r∑

i=1

Ji(ν(t)) > 0

for all t. Therefore

µi(ν(t)) ≥ 0, i = 1, 2, · · · , r;
r∑

i=1

µi(ν(t)) = 1

for all t. For the convenience of notations, let Ji = Ji(ν(t)) and µi = µi(ν(t)); then the final

state of the fuzzy system can be represented as

ẋ(t) =
r∑

i=1

µiAix(t) +
r∑

i=1

µiBiu(t). (1.2)

For the fuzzy controller design, it is supposed that the fuzzy system is locally controllable.

First, the local state feedback controllers are designed as follows, based on the pairs (Ai, Bi):

Controller Rule i:

IF ν1(t) is Mi1 and · · · and νϑ(t) is Miϑ THEN

u(t) = −Kix(t), i = 1, 2, · · · , r
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then, the final fuzzy controller is

u(t) = −
r∑

i=1

µiKix(t).

In practice, not all the state are available. Indeed, for a continuous-time systems, the

output measurement are often available at discrete points, i.e., measured at sampled points.

Therefore, it is necesary and practical useful to design an observer to estimate the system

state. In [33, 34], by restricting the premise variables (ν1, · · · , νϑ) to be measurable, a fuzzy

observer has been developed. This restriction enables the authors in [33, 34] to select the

fuzzy sets of the fuzzy observer to be the same as the fuzzy sets of the plant. Hence,

the development of the separation property of controller and filter is possible. In general,

however, the premise variables for a general TSK model can be unavailable. In this case, the

premise variables of the fuzzy observer can not be selected to be the same as the premise

variables of the plant. Hence, the results given in [33, 34] can not be applied. What we

intend in this paper is to design an H∞ output feedback controller by allowing the premise

variables of the plant to be unavailable.

Notation. Most of the notations used in this paper are fairly standard. <n and <n×m

denote respectively, the n dimensional Euclidean space and the set of all n × m real matrices.

The superscript “t” denotes matrix transposition and the notation X ≥ Y (respectively,

X > Y ) where X and Y are symmetric matrices, means that X −Y is positive semi-definite

(respectively, positive definite). L2[0, T ] stands for the space of square integrable vector

functions over [0, T ], l2(0, T ) is the space of square summable vector sequences over (0, T ),

‖ · ‖[0,T ] will refer to the L2[0, T ] norm over [0, T ] and ‖ · ‖(0,T ) is the l2(0, T ) norm over

(0, T ). T is allowed to be ∞ and in this case by the notation [0, T ] we mean [0,∞). F (θ−)

and F (θ+) stand for the left limit and right limit of a function F (θ), respectively.

2 System Description and Definition

The class of nonlinear sampled-data systems under consideration is described by the following

fuzzy system model:

Plant Rule i:

IF ν1(t) is Mi1 and · · · and νϑ(t) is Miϑ THEN, for i = 1, 2, · · · , r:

ẋ(t) = Aix(t) + B1w(t) + B2iu(t), t 6= mh, x(0) = x0 (2.1)
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z(t) = C1x(t), t 6= mh (2.2)

zd(mh) = Cdx(mh), (2.3)

y(mh) = C2ix(mh) + D21v(mh), (2.4)

where Mij(j = 1, 2, · · · , ϑ) are fuzzy sets, x(t) ∈ <n is the state, x0 is an unknown initial

state, w(t) ∈ <p is the disturbance input, u(t) ∈ <m is control input, y ∈ <` is the sampled

measurement, v ∈ <q is the measurement noise, z ∈ <r is the controlled continuous output,

zd ∈ <s is the controlled discrete output, 0 < h ∈ < is the sampling period, m is a positive

integer, Ai, B1, B2i, C1, C2i, Cd and D21 are known real time-varying bounded matrices of

appropriate dimensions with Ai, B1, B2i, C1 and D12 being piecewise continuous, and r is the

number of IF-THEN rules.

Throughout this paper, we adopt the following standard H∞ assumptions.

Assumption 2.1

D21[B
t
1 Dt

21] = [0 I]. (2.5)

Assumption 2.2 (eAih, C2i) are observable and (Ai, B2i) are controllable.

The resulting fuzzy system model is inferred as the weighted average of the local models and

has the form

ẋ(t) =
r∑

i=1

µiAix(t) + B1w(t) +
r∑

i=1

µiB2iu(t), t 6= mh, x(0) = x0 (2.6)

z(t) = C1x(t), t 6= mh (2.7)

zd(mh) = Cdx(mh) (2.8)

y(mh) =
r∑

i=1

µiC2ix(mh) + D21v(mh). (2.9)

We are concerned with designing a fuzzy H∞ output feedback control law G for (2.6)-(2.9),

based on the sampled output measurements of (2.9) such that the controller G reduces z

uniformly for any w and v in the sense that given a scalar γ > 0, the worst-case performance

measure of closed-loop system of (2.6)-(2.9) with the controller G, defined by:

∫ T

0
zT (t)z(t) dt +

k∑

m=1

zT
d (mh)z(mh) ≤ γ2

{∫ T

0
wT (t)w(t) dt +

k∑

m=1

vT (mh)v(mh)

}
(2.10)

is satisfied with k be the largest integer in [0, T ]. In this situation, the closed-loop system

of (2.6)-(2.9) with G is said to have an H∞ performance γ over the horizon [0, T ].

5



The control problem we address in this paper is as follows: Given a scalar γ > 0, design a

fuzzy controller (G) based on the sampled measurements, y(mh), such that (2.10) holds:

Note that the performance measure in (2.10) is in terms of not only of the controlled signals

at the sampling instants but also of the continuous-time controlled output between the

sampling instants. This allows the intersampling behaviour to be taken into account in the

control design. When only the controlled continuous output is considered, (2.10) will reduce

to the performance measure used in [8].

Remark 2.1 It should be remarked that (2.8)-(2.9) can be viewed as a “mixed L2/`2” output

signals. In real environmental systems, we always face continuous-time systems, discrete-

time systems, sampled-data systems and hybrid systems, i.e., systems with both continuous-

and discrete-time states. The study of this kind of systems is motivated by robust sampled-

data control, filtering and loop transfer recovery of sampled-data systems [14].

In this paper, we consider the following H∞ fuzzy output feedback controller, G:

Controller Rule i:

IF ν̂1(t) is Mi1 and · · · and ν̂ϑ(t) is Miϑ THEN

˙̂x(t) = aix̂(t) + biu(t), t 6= mh

x̂(mh) = x̂(mh−) + Li

[
y(mh) − ŷ(mh)

]

ŷ(t) = C2ix̂(t)

u(t) = Kix̂(t)

for i = 1, 2, · · · , r (2.11)

where ν̂i(t) are the premise variables of the controller, x̂(t) ∈ <n is the controller state vector,

ŷ(t) ∈ <` is the controller output, ai are the controller matrices, bi are the input matrices, Li

are the observer gains, Ki are the controller gains, and r is the number of IF-THEN rules.

The final H∞ fuzzy output feedback controller is inferred as follows:

˙̂x(t) =
∑r

i=1 µ̂iaix̂(t) +
∑r

i=1 µ̂ibiu, t 6= mh

x̂(mh+) = x̂(mh) +
∑r

i=1 µ̂iLi

[
y(mh) − ŷ(mh)

]

ŷ(t) =
∑r

i=1 µ̂iC2ix̂(t)

u(t) =
∑r

i=1 µ̂iKix̂(t).

(2.12)

Remark 2.2 In [33, 34], the premise variables of the fuzzy output feedback controller are

assumed to be the same as the premise variables of the fuzzy systems model. This actually

means that the premise variables of the fuzzy system model are assumed to be measurable.
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However, in general, it is extremely difficult to derive an accurate fuzzy systems model by

imposing that all the premise variables are measurable. In this paper, we do not impose that

condition, we choose the premise variables of the controller to be different from the premise

variables of the fuzzy system model of the plant.

Using (2.12), the control problem can be reformulated as follows:

Problem Formulation: Given a scalar γ > 0, design an H∞ fuzzy output feedback controller

of the form (2.12) such that the inequality (2.10) holds.

In the sequel, without loss of generality, we assume γ = 1. Let us denote the estimation

error as

e(t) = x(t) − x̂(t). (2.13)

By differentiating (2.13), we get

ė(t) = ẋ(t) − ˙̂x(t)

=
r∑

i=1

µiAix(t) + B1w(t) +
r∑

i=1

µiB2iu(t) −
r∑

i=1

µ̂iaix̂(t) −
r∑

i=1

µ̂ibiu(t)

=
r∑

i=1

(µi − µ̂i)Aix(t) +
r∑

i=1

r∑

j=1

(µi − µ̂i)µ̂jB2iKj[x(t) − e(t)] +
r∑

i=1

µ̂iAix(t)

−
r∑

i=1

µ̂iai[x(t) − e(t)] + B1w +
r∑

i=1

r∑

j=1

µ̂iµ̂j{B2i − bi}Kj[x(t) − e(t)], t 6= mh

=
r∑

i=1

(µi − µ̂i)Aix(t) +
r∑

i=1

r∑

j=1

(µi − µ̂i)µ̂jB2iKj[x(t) − e(t)]

+
r∑

i=1

µ̂iµ̂j

[
Ai − ai − biKj + B2iKj

]
x(t) + B1w

+
r∑

i=1

r∑

j=1

µ̂iµ̂j

{
ai + bi − B2i

}
Kj[x(t) − e(t)], t 6= mh

e(mh+) = e(mh) −
r∑

i=1

µ̂i

r∑

i=1

µ̂jLi

[
C2jx(t) + D21v(mh) − C2jx̂(t)

]

= e(mh) −
r∑

i=1

r∑

j=1

µ̂iµ̂jLiC2je(mh) −
r∑

i=1

r∑

j=1

µ̂i(µj − µ̂j)LiC2j

[
x(mh) − e(mh)

]

+
r∑

i=1

µ̂iLiD21v(mh). (2.14)
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The system (2.6) with (2.12) can be represented as follows:

ẋ(t) =
∑r

i=1

∑r
j=1 µ̂iµ̂j[Ai + B2iKj]x(t) −∑r

i=1

∑r
j=1 µ̂iµ̂jB2iKje(t)

+
∑r

i=1

∑r
j=1(µi − µ̂i)µ̂jB2iKj[x(t) − e(t)]

+
∑r

j=1(µi − µ̂i)Aix(t) + B1w(t), t 6= mh

x(mh+) = x(mh).

(2.15)

Using (2.14) and (2.15), we get the augmented system of the following form:

˙̃x(t) =


 ẋ(t)

ė(t)




=
∑r

i=1

∑r
j=1 µ̂iµ̂j


 Ai + B2iKj −B2iKj

Ai + B2iKj − ai − biKj ai − B2iKj + biKj


 x̃(t)

+
∑r

i=1

∑r
j=1(µi − µ̂i)µ̂j


 Ai + B2iKj −B2iKj

Ai + B2iKj −B2iKj


 x̃(t) +

∑r
i=1 µ̂i


 B1

B1


w(t)

=
∑r

i=1

∑r
j=1 µ̂iµ̂j

[
Aijx̃(t) + Ψiw(t)

]
+
∑r

j=1 µ̂jfj(x(t))x̃(t), t 6= mh

(2.16)

x̃(mh+) =
∑r

i=1

∑r
j=1 µ̂iµ̂j


 I 0

0 I − LiC2j


 x̃(mh)

+
∑r

i=1

∑r
j=1 µ̂i(µj − µ̂j)


 0 0

−LiC2j LiC2j


 x̃(mh)

+
∑r

i=1 µ̂i


 0

−LiD21


 v(mh)

=
∑r

i=1

∑r
j=1 µ̂iµ̂j

[
(Āij + Hi∆FE)x̃(mh) + Υiv(mh)

]

(2.17)

where

Aij =


 Ai + B2iKj −B2iKj

Ai + B2iKj − ai − biKj ai − B2iKj + biKj


 (2.18)

Āij =


 I 0

0 I − LiC2j


 , Hi =


 0

Li


 (2.19)

fj(x̃(t)) =


 ∆A 0

∆A 0


 +


 ∆BKj −∆BKj

∆BKj −∆BKj


 (2.20)
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Ψi =


 B1

B1


 , Υi =


 0

−LiD21


 , E =




−C21 C21

...
...

−C2r C2r


 (2.21)

∆F = [(µ1 − µ̂1) · · · (µr − µ̂r)], ∆B =
r∑

i=1

(µi − µ̂i)Bi, ∆A =
r∑

i=1

(µi − µ̂i)Ai. (2.22)

3 Fuzzy Output Feedback Control Design

In this section, we convert the problem of H∞ fuzzy output feedback control to the solvability

of differential Riccati inequalities with jumps.

Theorem 3.1 Given the augmented system (2.16)-(2.17) satisfying Assumptions 2.1 and

2.2, if there exists a positive definite symmetric solution P such that for i, j = 1, 2, · · · , r,
the following differential Riccati matrix inequalities with jumps hold:

Ṗ (t) + AT
ijP + PAij + PΨiΨ

T
i P + 4Φj + 4Ξ + Q ≤ 0 (3.1)

[
I − HT

i P (mh+)Hi

]
> 0 (3.2)

ÃT
iiP (mh+)Ãii + ÃT

iiP (mh+)Hi

[
I − HT

i P (mh+)Hi

]−1

HT
i P (mh+)Ãii + CT

d Cd + 2ÊT Ê

−P̄ (mh) ≤ 0(3.3)

(
Ãij + Ãji

)T
P (mh+)

(
Ãij + Ãji

)
+
(
Ãij + Ãji

)T
HiP (mh+)

[
I − HT

i P (mh+)Hi

]−1

×

HT
i P (mh+)

(
Ãij + Ãji

)
+ 4CT

d Cd + 8ÊT Ê − 4P̄ (mh) ≤ 0 for i < j (3.4)

where

Φj =



∑r

s=1 KT
j BT

s BsKj 0

0
∑r

s=1 KT
j BT

s BsKj


 , Ξ =



∑r

s=1 AT
s As 0

0
∑r

s=1 AT
s As




Q =


 CT

1 C1 0

0 0


 , P̄ (mh) =


 P (mh) 0

0 0


 , Ê = [E 0], Ãij = [Āij Υi].
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Then the H∞ control performance of (2.10) is guaranteed.

Proof: Let us choose a Lyapunov function for the augmented system (2.16)-(2.17) as

V (x̃(t), t) = x̃T (t)P (t)x̃(t) (3.5)

For τ ∈ (mh+, mh + h),

∫ τ

mh+

d

dt
{V (x̃(t))} dt = x̃T (τ)P (τ)x̃(τ) − x̃T (mh+)P (mh+)x̃(mh+). (3.6)

First let us consider and denote the left hand side of (3.6) as

Θ(x̃(τ)) =
∫ τ

mh+

d

dt
{V (x̃(t))} dt =

∫ τ

mh+
x̃T (t)Ṗ (t)x̃(t) + ˙̃x

T
(t)P (t)x̃(t) + x̃T (t)P (t) ˙̃x(t) dt

=
∫ τ

mh+







r∑

i=1

r∑

j=1

µ̂iµ̂j[Aijx̃(t) + Ψiw(t)] +
r∑

i=1

µ̂jfj(x(t))x̃(t)




T

P (t)x̃(t)

+ x̃T (t)P (t)




r∑

i=1

r∑

j=1

µ̂iµ̂j[Aijx̃(t) + Ψiw(t)] +
r∑

i=1

µ̂jfj(x(t))x̃(t)


+ x̃T (t)Ṗ (t)x̃(t)


 dt

=
∫ τ

mh+


x̃T (t)P (t)




r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)


+




r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)




T

P (t)x̃(t)

{
wT (t)

r∑

i=1

µ̂iΨ
T
i P (t)x̃(t) + x̃T (t)P (t)

r∑

i=1

µ̂iΨiw(t)

−wT (t)w(t) − x̃T (t)P (t)

(
r∑

i=1

µ̂iΨi

)(
r∑

i=1

µ̂iΨi

)T

P (t)x̃(t)





+wT (t)w(t) + x̃T (t)P (t)

(
r∑

i=1

µ̂iΨi

)(
r∑

i=1

µ̂iΨi

)T

P (t)x̃(t) + x̃T (t)Ṗ (t)x̃(t)

+x̃T (t)

(
r∑

i=1

µ̂ihi(x(t))x̃(t)

)T

P (t)x̃(t) + x̃T (t)P (t)

(
r∑

i=1

µ̂jfj(x(t))x̃(t)

)
 dt

≤
∫ τ

mh+







r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)




T

P (t)x̃(t) + x̃T (t)P (t)




r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)




−
(

r∑

i=1

µ̂iΨ
T
i P (t)x̃(t) − w(t)

)T ( r∑

i=1

µ̂iΨ
T
i P (t)x̃(t) − w(t)

)
+ x̃T (t)Ṗ (t)x̃(t)

+wT (t)w(t) + x̃T (t)P (t)

(
r∑

i=1

µ̂iΨi

)(
r∑

i=1

µ̂iΨi

)T

P (t)x̃(t) + x̃(t)P (t)P (t)x̃(t)

10



(
r∑

i=1

µ̂jhj(x(t))x̃(t)

)T ( r∑

i=1

µ̂jfj(x(t))x̃(t)

)
 dt

≤
∫ τ

mh+







r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)




T

P (t)x̃(t) + x̃T (t)P (t)




r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)




+wT (t)w(t) +
r∑

i=1

µ̂ix̃
T (t)P (t)ΨiΨ

T
i P (t)x̃(t) + x̃(t)P (t)P (t)x̃(t)

+x̃T (t)Ṗ (t)x̃(t) +

(
r∑

i=1

µ̂jfj(x(t))x̃(t)

)T ( r∑

i=1

µ̂jfj(x(t))x̃(t)

)
 dt. (3.7)

Let us examine the last term of (3.7).




r∑

j=1

µ̂jfj(x(t))x̃(t)




T 


r∑

j=1

µ̂jfj(x(t))x̃(t)


 ≤

r∑

j=1

µ̂jx̃
T (t)fT

j (x(t))fj(x(t))x̃(t)

= 2
r∑

j=1

µ̂jx̃
T (t)






 ∆AT ∆A ∆AT ∆A

0 ∆AT ∆A


 x̃(t)

+


 KT

j ∆BT ∆BKj −KT
j ∆BT ∆BKj

−KT
j ∆BT ∆BKj KT

j ∆BT ∆BKj


 x̃(t)





≤ 4
r∑

j=1

µ̂jx̃
T (t)






 ∆AT ∆A 0

0 ∆AT ∆A


 x̃(t)

+


 KT

j ∆BT ∆BKj 0

0 KT
j ∆BT ∆BKj


 x̃(t)





≤ 4x̃T (t)Ξx̃(t) + 4
r∑

j=1

µ̂jx̃
T (t)Φjx̃(t) (3.8)

where Ξ and Φj are given in Theorem 3.1.

Employing (3.8), then inequality (3.7) becomes

Θ(x̃(τ)) =
∫ τ

mh+







r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)




T

P (t)x̃(t) + x̃T (t)P (t)




r∑

i=1

r∑

j=1

µ̂iµ̂jAijx̃(t)




+wT (t)w(t) +
r∑

i=1

µ̂ix̃
T (t)P (t)ΨiP (t)x̃(t) + x̃(t)P (t)P (t)x̃(t) + 4x̃T (t)Ξx̃(t)

+4
r∑

j=1

µ̂jx̃
T (t)Φjx̃(t) + x̃T (t)Ṗ (t)x̃(t)


 dt
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=
∫ τ

mh+




r∑

i=1

r∑

j=1

µ̂iµ̂jx̃
T (t)

{
AT

ijP (t) + P (t)Aij + P (t)ΨiΨ
T
i P (t) + 4Φj + 4Ξ+

P (t)P (t)
}
x̃(t) + wT (t)w(t) + x̃T (t)Ṗ (t)x̃(t)

]
dt. (3.9)

Using (3.1), we get

Θ(x̃(τ)) ≤ −
∫ τ

mh+

[
zT (t)z(t) + wT (t)w(t)

]
dt. (3.10)

Now let us consider at the sampling instant

V (x̃(t))|mh+

mh = V (x̃(mh+), mh+) − V (x̃(mh), mh). (3.11)

Let us denote the left hand side of (3.11) as

Θ(x̃(mh)) = V (x̃(t))|mh+

mh

= x̃T (mh+)P (mh+)x̃(mh+) − x̃T (mh)P (mh)x̃(mh)

=




r∑

i=1

r∑

j=1

µ̂iµ̂j[Âijx(mh) + Υiv(mh)]




T

P (mh+) ×

(
k∑

i=1

r∑

l=1

µ̂kµ̂l[Âijx̃(mh) + Υiv(mh)]

)
− x̃T (mh)P (mh)x(mh) (3.12)

where Âij = Āij + Hi∆FE.

Rewrite (3.12) as

Θ(x̃(mh)) =
1

4




r∑

i=1

r∑

j=1

µ̂iµ̂j

(
Âij + Âji

)
x̃(mh) + Υiw(mh)




T

P (mh+) ×

(
k∑

i=1

r∑

l=1

µ̂kµ̂l

(
Âkl + Âlk

)
x̃(mh) + Υiv(mh)

)
− x̃T (mh)P (mh)x̃(mh)

≤ 1

4

r∑

i=1

r∑

j=1

µ̂iµ̂j

[((
Âij + Âji

)
x̃(mh) + Υiv(mh)

)T
P (mh+)×

((
Âij + Âji

)
x̃ + Υiv(mh)

) ]
− x̃T (mh)P (mh)x̃(mh)

=
r∑

i=1

µ̂2
i

[(
Âiix̃(mh) + Υiw(mh)

)T
P (mh+)

(
Âiix̃(mh) + Υiv(mh)

)

12



−x̃T (mh)P (mh)x̃(mh)
]

+ 2
r∑

i<j

r∑

j=1

µ̂iµ̂j



((

Âij + Âji

2

)
x̃(mh) + Υiv(mh)

)T

×

P (mh+)

((
Âij + Âji

2

)
x̃(mh) + Υiv(mh)

)
− x̃T (mh)P (mh)x̃(mh)

]
.

Letting x̄T (mh) = [x̃T (mh) vT (mh)], we have

Θ(x̃(mh)) ≤
r∑

i=1

µ̂2
i x̄

T (mh)
(
[Âii Υi]

T P (mh+)[Âii Υi] − P̄ (mh)
)

x̄(mh)

+ 2
r∑

i<j

r∑

j=1

µ̂iµ̂jx̄
T (mh)

(
1

4

[(
Âij + Âji

)
2Υi

]T
P (mh+)

[(
Âij + Âji

)
2Υi

]

−P (mh+)
)
x̃(mh)

=
r∑

i=1

µ̂2
i x̄

T (mh)
(
[Ãii + Hi∆FÊ]T P (mh+)[Ãii + Hi∆FÊ] − P̄ (mh)

)
x̄(mh)

+ 2
r∑

i<j

r∑

j=1

µ̂iµ̂jx̄
T (mh)

([
1

4

(
Ãij + Ãji + 2Hi∆FÊ

)T
×

P (mh+)
(
Ãij + Ãji + 2Hi∆FÊ

)]
− P̄ (mh)

)
x̃(mh) (3.13)

where P̄ (mh), Ê and Ãij are given in Theorem 3.1.

Notice that

[Ãii + Hi∆FÊ]T P (mh+)[Ãii + Hi∆FÊ] ≤ ÃT
iiP (mh+)Ãii

+ÃT
iiP (mh+)Hi

(
I − HT

i P (mh+)Hi

)−1

HT
i P (mh+)Ãii + 2ÊT Ê (3.14)

and

(
Ãij + Ãji + 2Hi∆FÊ

)T
P (mh+)

(
Ãij + Ãji + 2Hi∆FÊ

)
≤
(
Ãij + Ãji

)T
P (mh+) ×

(
Ãij + Ãji

)
+
(
Ãij + Ãji

)T
HiP (mh+)

(
I − HT

i P (mh+)Hi

)−1

HT
i P (mh+)

(
Ãij + Ãji

)

+8ÊT Ê.

(3.15)

Using (3.14),(3.15),(3.3), (3.4) and (3.2), we have from (3.13)

Θ(x̃(mh)) ≤ zT
d (mh)zd(mh) − vT (mh)v(mh). (3.16)
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By combining (3.10) and (3.16) over all possible t on [0, T ], one has

V (x̃(T ), T ) − V (0, 0) ≤
∫ T

0

[
wt(t)w(t) − zt(t)z(t)

]
dt +

k∑

m=1

vt(mh)v(mh)

−
k∑

m=1

zt
d(mh)zd(mh) dt. (3.17)

Knowing that V (0, t) = 0 and V (x(t), t) > 0, ∀x(t) 6= 0, we obtain

k∑

m=1

zt
d(mh)zd(mh) +

∫ T

0
zt(t)z(t) dt ≤

∫ T

0
wt(t)w(t) dt +

k∑

m=1

vt(mh)v(mh) − V (x(T ), T )

≤
∫ T

0
wt(t)w(t) dt +

k∑

m=1

vt(mh)v(mh). (3.18)

Therefore, the H∞ control performance (2.10) is acheived. ∇∇∇

In the same spirit as the linear H∞ sampled-data results, if we choose

P =


 P11(t) 0

0 P22(t)


 (3.19)

ai = Ai + BiB
T
i P11(t), bi = B2i, Kj = −BT

2iP11(t) and Li = P−1
22 (mh+)C2i, then we have the

following corollary.

Corollary 3.1 Given the closed loop system (2.16)-(2.17) satisfying Assumptions 2.1 and

2.2, if there exist positive definite symmetric solutions P11(t) and P22(t) such that for i, j =

1, 2, · · · , r, the following differential Riccati matrix inequalities with jumps hold

1)

AT
i P11 + P11Ai −

1

2
P11B2jB

T
2iP11 −

1

2
P11B2iB

T
2jP11 + P11B1B

T
1 P + CT

1 C1

+4P11B2j

r∑

s=1

BT
s BsB

T
2jP11 + 4

r∑

s=1

AT
s As ≤ 0 (3.20)

P11(mh+) ≤ P11(mh) − CT
d Cd − 4

r∑

s=1

CT
k Ck (3.21)

2)

P22(Ai + B1B
T
1 P11) + (Ai + B1B

T
1 P11)

T P22 +
1

2
P11B2jB

T
2iP11

14



+
1

2
P11B2iB

T
2jP11 + P22B1B

T
1 P22 + 4P11B2j

r∑

s=1

BT
s BsB

T
2jP11 + 4

r∑

s=1

AT
s As ≤ 0 (3.22)

(
I − C2iP

−1
22 (mh+)CT

2i

)
> 0 (3.23)

P22(mh+) ≤ P22(mh) + CT
2iC2j + CT

2jC2i − CT
2jC2j − CT

d Cd − 4
r∑

s=1

CT
2sC2s. (3.24)

Then the H∞ control performance of (2.10) is guaranteed with the following controller:

˙̂x(t) =
∑r

i=1 µ̂i{Ai + B1B
T
1 P11}x̂(t) +

∑r
i=1 µ̂iB2iu, t 6= mh

x̂(mh+) = x̂(mh) +
∑r

i=1 µ̂iP
−1
22 (mh+)CT

2i

[
y(mh) −∑r

j=1 C2jx̂(mh)
]

u(t) = −∑r
j BT

2jP11x̂(t).

(3.25)

If C2i = C2 and B2i = B2 for all i = 1, 2, · · · , r, we have the following corollary.

Corollary 3.2 Given the closed loop system (2.16)-(2.17) satisfying Assumptions 2.1 and

2.2, if there exist positive definite symmetric solutions P11(t) and P22(t) such that for i, j =

1, 2, · · · , r, the following differential Riccati matrix inequalities with jumps hold

1)

AT
i P11 + P11Ai − P11B2B

T
2 P11 + P11B1B

T
1 P11 + CT

1 C1 + 4
r∑

s=1

AT
s As ≤ 0 (3.26)

P11(mh+) ≤ P11(mh) − CT
d Cd (3.27)

2)

P22(Ai + B1B
T
1 P11) + (Ai + B1B

T
1 P11)

T P22 + P11B2B
T
2 P11 + P22B1B

T
1 P22 + 4

r∑

s=1

AT
s As ≤ 0

(3.28)(
I − C2P

−1
22 (mh+)CT

2

)
> 0 (3.29)

P22(mh+) ≤ P22(mh) + CT
2 C2. (3.30)
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Then the H∞ control performance of (2.10) is guaranteed with the following controller:

˙̂x(t) =
∑r

i=1 µ̂i

{
Ai + B1B

T
1 P11 − B2B

T
2 P11

}
x̂(t), t 6= mh

x̂(mh+) = x̂(mh) + P−1
22 (mh+)CT

2

[
y(mh) − C2x̂(mh)

]

u(t) = −BT
2 P11x̂(t).

(3.31)

4 A Simulation Example

The following model is used in this simulation:

ẋ1(t) = −x1(t) − x2(t) − sin(x1(t)) + 0.002w + u(t)

ẋ2(t) = x1(t)

z(t) = 15x1(t) + 15x2(t)

y(mh) = x1(mh) + x2(mh) + v(mh).

(4.1)

A fuzzy system model under sampled output measurements for the above system is given as

follows:

Rule 1: If x1(t) is M1 THEN

ẋ(t) = A1x(t) + B1w + B21u(t)

z(t) = C1x(t)

y(mh) = C21x(mh) + D21v(mh)

(4.2)

Rule 2: If x1(t) is M2 THEN

ẋ(t) = A2x(t) + B1w + B22u(t)

z(t) = C1x(t)

y(mh) = C22x(mh) + D21v(mh)

(4.3)

where x(t) = [x1(t) x2(t)]
T , the membership functions M1 and M2 are sin(x1(t))

x1(t)
, and

x1(t)−sin(x1(t))
x1(t)

, respectively,

A1 =


 −1 −1

1 0


 , A2 =


 −2 −1

1 0


 , B1 =


 0.002

0


 , B21 = B22 =


 1

0


 ,

C1 = [15 15] , Cd = [0 0], D21 = 1, C21 = C22 = [1 1]
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. Note that the premise variable of the above fuzzy system model is x1(t) which is unavailable.

Hence the method proposed in [33, 34] can not be employed here. Applying Corollary 3.2,

we have the following stationary fuzzy H∞ output feedback controller:

Rule 1: If x2(t) is M1 THEN

˙̂x(t) =
{
A1 + B1B

T
1 P11 − B2B

T
2 P11

}
x̂(t), t 6= mh (4.4)

x̂(mh+) = x̂(mh) + P−1
22 CT

2

[
y(mh) − C2x̂(mh)

]
(4.5)

u(t) = −BT
2 P11x̂(t). (4.6)

Rule 2: If x2(t) is M2 THEN

˙̂x(t) =
{
A2 + B1B

T
1 P11 − B2B

T
2 P11

}
x̂(t), t 6= mh (4.7)

x̂(mh+) = x̂(mh) + P−1
22 CT

2

[
y(mh) − C2x̂(mh)

]
(4.8)

u(t) = −BT
2 P11x̂(t) (4.9)

where P11 =


 100 50

50 150


 and P22 =


 60000 3000

3000 90000


 .

Remark 4.1 Simulation results for the ratio

{
‖z‖2

[0,T ]
+‖zd‖2

(0,T )

}
{
‖w‖2

[0,T ]
+‖v‖2

(0,T )

} obtained by using the fuzzy

H∞ controller for system (4.1) is depicted in Fig. 1. The graphs in Fig. 2 and Fig. 3,

respectively, only show the first second of the input disturbance signals w(t) and v(mh) which

were used during the simulation. The sampling time used in the simulation was 0.01 sec.

From Fig. 1, we can see that after 1200 seconds the ratio

{
‖z‖2

[0,T ]
+‖zd‖2

(0,T )

}
{
‖w‖2

[0,T ]
+‖v‖2

(0,T )

} tends to a constant

value which is about 0.018. So the L2 gain from ‖w‖[0,T ] + ‖v‖(0,T ) to ‖z‖[0,T ] + ‖zd‖(0,T ) is

about
√

0.018 = 0.134, which is less than the prescribed value 1.

5 Conclusion

This paper has investigated the problem of stablising a class of fuzzy system models under

sampled measurement using an H∞ fuzzy output feedback controller. A nonlinear sysyem

is first approximated by a Takagi-Sugeno fuzzy model. Then based on the well-known H∞
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Figure 1: Ratio of the regulated energy to the disturbance energy.

theory, a technique for designing an H∞ fuzzy output feedback control law which globally

stabilises this class of nonlinear systems under sampled measurement has been developed. In

contrast to the results given in [33, 34], the premise variables of the H∞ fuzzy output feedback

controller are allowed to be different from the premise variables of the Takagi-Sugeno fuzzy

model of the plant.
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