1,479 research outputs found

    Nonlinear disturbance attenuation control of hydraulic robotics

    Full text link
    This paper presents a novel nonlinear disturbance rejection control for hydraulic robots. This method requires two third-order filters as well as inverse dynamics in order to estimate the disturbances. All the parameters for the third-order filters are pre-defined. The proposed method is nonlinear, which does not require the linearization of the rigid body dynamics. The estimated disturbances are used by the nonlinear controller in order to achieve disturbance attenuation. The performance of the proposed approach is compared with existing approaches. Finally, the tracking performance and robustness of the proposed approach is validated extensively on real hardware by performing different tasks under either internal or both internal and external disturbances. The experimental results demonstrate the robustness and superior tracking performance of the proposed approach

    Learning and Reacting with Inaccurate Prediction: Applications to Autonomous Excavation

    Get PDF
    Motivated by autonomous excavation, this work investigates solutions to a class of problem where disturbance prediction is critical to overcoming poor performance of a feedback controller, but where the disturbance prediction is intrinsically inaccurate. Poor feedback controller performance is related to a fundamental control problem: there is only a limited amount of disturbance rejection that feedback compensation can provide. It is known, however, that predictive action can improve the disturbance rejection of a control system beyond the limitations of feedback. While prediction is desirable, the problem in excavation is that disturbance predictions are prone to error due to the variability and complexity of soil-tool interaction forces. This work proposes the use of iterative learning control to map the repetitive components of excavation forces into feedforward commands. Although feedforward action shows useful to improve excavation performance, the non-repetitive nature of soil-tool interaction forces is a source of inaccurate predictions. To explicitly address the use of imperfect predictive compensation, a disturbance observer is used to estimate the prediction error. To quantify inaccuracy in prediction, a feedforward model of excavation disturbances is interpreted as a communication channel that transmits corrupted disturbance previews, for which metrics based on the sensitivity function exist. During field trials the proposed method demonstrated the ability to iteratively achieve a desired dig geometry, independent of the initial feasibility of the excavation passes in relation to actuator saturation. Predictive commands adapted to different soil conditions and passes were repeated autonomously until a pre-specified finish quality of the trench was achieved. Evidence of improvement in disturbance rejection is presented as a comparison of sensitivity functions of systems with and without the use of predictive disturbance compensation

    Joint Torque Sensory in Robotics

    Get PDF

    Robust Attenuation of Frequency Varying Disturbances

    Get PDF

    A Modular and High-Precision Motion Control System With an Integrated Motor

    Full text link

    Master of Science

    Get PDF
    thesisThis research studies the passive dynamics of an under-actuated trotting quadruped. The goal of this project is to perform three-dimensional (3D) dynamic simulations of a trotting quadruped robot to find proper leg configurations and stiffness range, in order to achieve stable trotting gait. First, a 3D simulation framework that includes all the six degrees of freedom of the body is introduced. Directionally compliant legs together with different leg configurations are employed to achieve passive stability. Compliant legs passively support the body during stance phase and during flight phase a motor is used to retract the legs. Leg configurations in the robot's sagittal and frontal plane are introduced. Numerical experiments are conducted to search the design space of the leg, focusing on increasing the passive stability of the robot. Increased stability is defined as decreased pitching, rolling, and yawing motion of the robot. The results indicate that optimized leg parameters can guarantee passive stable trotting with reduced roll, pitch, and yaw. Studies suggest that a quadruped robot with compliant legs is dynamically stable while trotting. Results indicate that the robot based on a biological model (i.e., caudal inclination of humeri and cranial inclination of femora) has the best performance. Stiff springs at hips and shoulders, soft spring at knees and elbows, and stiff springs at ankles and wrists are recommended. The results of this project provide a conceptual framework for understanding the movements of a trotting quadruped

    Review and Analysis on Main Technology of Exoskeletal Robot System for Upper Limbs Rehabilitation

    Get PDF
    Major function of exoskeletal robot system for upper limbs rehabilitation is to assist patient to carry out upper limbs’ rehabilitation training. Main technology of exoskeletal robot system for upper limbs rehabilitation includes design of mechanical structure of exoskeletal robot, design of control system of exoskeletal robot and implemention of data and information transmission between exoskeletal robot and upper limbs of human body. Currently implemention of data and information transmission rely mainly on methods of acquiring sEMG signal and force feedback. Reviewing and analyzing the specific technical development and deficiency in field of exoskeletal robot system for upper limbs rehabilitation will be important way in improving and upgrading the technology in future

    Frequency-Shaped Second-Order Sliding Mode Control for Smart Suspension Systems

    Full text link
    © 2018 IEEE. Design of a frequency-shaped second-order sliding mode (FS2SM) controller is demonstrated by means of exploiting second-order low-pass filter (LPF) to model the dynamic sliding surface to shape the frequency characteristics of the equivalent dynamics. The proposed technique is numerically verified in the simulation of a half-car model (HCM) with inbuilt active hydraulically interconnected suspension (HIS) system. The closed-loop performances confirm that inclusion of an appropriate filter in the control scheme allows not only to reduce the roll angle but also its spectrum can be shaped
    corecore