
 

164 ©VIBROENGINEERING. VIBROENGINEERING PROCEDIA. NOVEMBER 2013. VOLUME 2. ISSN 2345-0533  

Review and Analysis on Main Technology of Exoskeletal 

Robot System for Upper Limbs Rehabilitation 
Liang Zhao, Mingshi Chen, Qing Wu 

REVIEW AND ANALYSIS ON MAIN TECHNOLOGY OF EXOSKELETAL ROBOT SYSTEM FOR UPPER LIMBS REHABILITATION.  

LIANG ZHAO, MINGSHI CHEN, QING WU 

Liang Zhao1, Mingshi Chen2, Qing Wu3 
1, 3 Research Center of Philosophy of Science & Technology, School of Humanities and Law, 
Northeastern University, Shenyang, 110819, China 
2 Department of TCM, the First Affiliated Hospital, China Medical University, Shenyang, 110010, 
China 
 

E-mail: mingshi0308@163.com 

Abstract. Major function of exoskeletal robot system for upper limbs rehabilitation is to assist patient to carry 

out upper limbs’ rehabilitation training. Main technology of exoskeletal robot system for upper limbs 

rehabilitation includes design of mechanical structure of exoskeletal robot, design of control system of 

exoskeletal robot and implemention of data and information transmission between exoskeletal robot and upper 

limbs of human body. Currently implemention of data and information transmission rely mainly on methods of 

acquiring sEMG signal and force feedback. Reviewing and analyzing the specific technical development and 

deficiency in field of exoskeletal robot system for upper limbs rehabilitation will be important way in improving 

and upgrading the technology in future.  

1. Introduction 

Exoskeletal robot technology for upper limbs rehabilitation is a new interdisciplinary research field of 
mechanical engineering and medical rehabilitation at present. Major function of exoskeletal robot 
system for upper limbs rehabilitation is to assist patient to carry out upper limbs’ rehabilitation 
training. According to modern evidence-based medicine (EBM) and continuous passive motion (CPM) 
theory [1, 2], exoskeletal robot for upper limbs rehabilitation can assist patient to recover normal 
exercise capacity in a relatively short period of time. Internationally, main technology of exoskeletal 
robot system for upper limbs rehabilitation has been widely studied and applied. 

Main technology of exoskeletal robot system for upper limbs rehabilitation includes design of 
mechanical structure of exoskeletal robot, design of control system of exoskeletal robot and 
implemention of data and information transmission between exoskeletal robot and upper limbs of 
human body. Currently implemention of data and information transmission rely mainly on methods of 
acquiring sEMG signal and force feedback. So far in the field lots of progress has been made, but there 
are still some problems waiting to be solved. Reviewing and analyzing development and deficiency in 
field of exoskeletal robot system for upper limbs rehabilitation will be important way in improving 
and upgrading the technology in future. 

2. Review on Design of Mechanical Structure of Exoskeletal Robot System for Upper Limbs 

Rehabilitation 

There are three main types of mechanical structures of robot system for upper limbs rehabilitation: 
end structure, exoskeleton structure and mixed structure. Compared with other structures of robot 
system for upper limbs rehabilitation, exoskeleton structure has irreplaceable superiority [3-5]. 

Dextrous Hand Master as in figure 1 developed by EXOS company [6] and Cybergrasp hand 
exoskeleton as in figure 2 developed by Immersion company [7] are both designed for multi finger 
joints and integrated with joint sensor, but the structures are too trouble for patients in dressing and 
using and are easy to make patients psychologically terrified and physically uncomfortable. 
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Figure 1. Dextrous Hand 
Master. 

 Figure 2. Cybergrasp. 

 

CPM machine as in figure 3 developed by Ability One company and CPM machine as in figure 4 
developed by Rolyan company for continuous passive motion in hand function rehabilitation are both 
with simple structures and comfortable for dress, but their structures with weak flexibility can only 
allow single joint rehabilitation motion and can’t precisely control multi finger joints simultaneously 
in multi joints rehabilitation. Hand Mentor as in figure 5 developed by KMI company [8] with simple 
structure and good flexibility using pneumatic muscle can only allow finger rehabilitation combined 
with wrists but not allow refined finger rehabilitation training. RM II-ND Hand Master as in figure 6 
developed by New Jersey State University in the USA [9] is also driven by pneumatic muscle, but its 
glove-type dressing structure and pneumatic muscle set in palm device restrict fingers’ range of 
movement. 

 
   

 

Figure 3. CPM by 
AbilityOne. 

 Figure 4. CPM by 
Rolyan. 

 Figure 5. Hand 
Mentor. 

 Figure 6. RM II-ND. 

 
Currently most designs of mechanical structure of exoskeletal system for upper limbs rehabilitation 

have problems as following: Compliance control of force and security need to be improved in 
rehabilitation training; there is usually no participation of first finger; structures are not simple and 
comfortable enough for dressing, aren’t integrated with joint angle sensor, or restrict fingers’ range of 
movement. 

3. Review on Design of Control System of Exoskeletal Robot for Upper Limbs Rehabilitation 

SC of exoskeletal robot for upper limbs rehabilitation belongs to so typical nonlinear control that 
many factors block the increase of control accuracy as following: mechanical friction, torque ripple 
and environmental disturbance happen among the electric motor’s working; existence of static friction 
and coulomb friction cause great error when exoskeletal robot system control position by changing the 
reference signal direction frequently; exoskeletal robot system always disturbed by surrounding 
environment due to constraint between mechanical hand with human hand, so if control system of 
exoskeletal robot don’t have strong robustness it will become bad; error between nominal model and 
the actual controlled object, structural uncertainty ignored in modeling of control system and multiple 
joints’ nonlinear coupling effects always fail the control of robot system; position error caused by 
finite rigidity and clearance of  transmission parts; geometric errors of components and material 
structures which cause the reduced accuracy. So the main design point of rehabilitation robot is how to 
restrain interference brought by human hand and environment to enhance the accuracy of robot 
tracking trajectory. 
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3.1. Research on Perturbation Rejection Algorithm 

The main methods to restrain uncertainty of disturbance and parameter affecting system are DOB [10], 
ARC [11-13], MBDA [14-15], EIMC [16] and TDC [17, 18]. The methods above always need a two-
ring control structure as in figure 10 that one is an inner loop compensator to realize disturbance 
compensation while the other is an outer loop controller to meet the system performance requirements. 
In this plan, inner loop compensator produce correct control inputs to compensate external disturbance 
as much as possible. 

 

 

Figure 10. Two-ring Control Structure. 
 

Among these methods, DOB is researched by many scholars due to its simple structure and good 

robustness. In the light of design and optimization problems of Q  wave filter, Umeno T and partners 

defined a disturbance observer and gave a universal form of Q  filter based on 2DOF controller design 

theory mapped in equation form as following, in which N  denotes order of ( )Q s , τ  denotes time 

constant of filtering and r  denotes relative order of ( )Q s  [19]: 
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Lee and Tomizuka added robustness feedback controller based on disturbance observer to the 
speed loop of high precise position system in light of speed loop design of high precise position servo 
system to compensate disturbance outside and uncertainty of the controlled object and hence put 

forward a second order 
31

Q  filter whose form can be mapped in equation form as following, in which 

τ  denotes time constant of filtering [20]: 
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White considered adding robustness feedback controller based on disturbance observer to the 
position loop of system to compensate disturbance outside and uncertainty of the controlled object and 
discussed the effects of position error signals to system [21]. Kim and Chung analyzed disturbance 
observer design by using doubly coprime factorizations and produced a method of number controller 

design based on sensitivity optimization matching to a giving ( )Q s  [22]. In light of high-frequency 

interference taken by high speed CD-ROM disk spinning, Ryoo and partners designed a disturbance 

observer with a ordinary ( )Q s  filter to restrain the high-frequency interference [23]. Yamada and 

partners designed a higher order disturbance observer by using a higher order integrator to meet the 
demands of fast shadow and low sensitivity to disturbance and proved higher order disturbance 
observers can cause a slight oscillation due to large phase lag [24]. Tesfaye used a method of 
numerical optimization to make the sensitivity function of system to match with the selected object’s 
to finish the design of disturbance observer [25]. 

3.2. Research on Sliding mode variable structure control method 

System in sliding motion has strong robustness and insensitivity to the model uncertainties and 
external disturbances. Variable structure control, which is reflected on the nonlinear control, needs to 
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meet the following design goals: it exists in sliding mode; it satisfies the reaching condition. It means 

that the phase trajectory outside of the switching surface ( ) 0
i

S x =  will arrive at the sliding surface in 

finite time; the sliding mode motion is asymptotically stable and has good dynamic quality. The goals 
above can be summarized as two design problems on the design of switching function and the 
calculating of control law. The switching function includes linear switching function and nonlinear 
switching function. Linear switching function is a linear combination of the state of the system whose 
more common design methods include geometric method [26], pole placement method [27], terminal 
sliding mode method [28] and optimal quadratic method [29], etc. Because the sliding mode variable 
structure control designed base on linear switching function exists reaching phase, linear sliding 
surface applies to nonlinear systems whose requirements of speed and accuracy are not too high, such 
as some simple motor servo controlling system. But when it is for complex nonlinear system such as 
robot and so on, there is obviously insufficient on linear sliding surface, and the existence of the 
reaching phase reduces the robustness of the system. 

There comes out many design methods of nonlinear switch function to ensure better performance 
of control system. Young proposed a switch function design method based on frequency shaping to 
avoid the effects of modeling error to system [30]. Lu and partners produced a global robust sliding 
mode control [31] which design a nonlinear switch function to achieve the goal with robustness in the 
whole dynamic process, so is integral switch function [32]. Bartoszewicz proposed a design method of 
time-varying switch function in light of second order nonlinear system which made the system in a 
sliding surface at the beginning of movement avoiding reaching movement in sliding mode control 
[33], but the method must improve its convergence speed. Park and Choi proposed the concept of 
switch function of rotation and translation motion, compared with the design of static switch function 
[34, 35]. 

In real control system, due to the existed factors of inertia and time delaying, sliding mode variable 
structure control system exist high frequency chattering unavoidably in sliding mode which not only 
affect the accuracy of control system and increase energy consumption but also the high frequency 
unmodeled dynamics can be excited easily to damage the performance of system even make system 
instable. So Slotine and partners introduced the concept of “quasi-sliding mode” and “boundary layer” 
in the design of sliding mode control. Quasi-sliding mode control used ordinary sliding mode control 
outside the boundary layer and continuous state feedback control in the boundary layer to avoid or 
weaken the chattering efficiently, but the use of quasi-sliding mode reduced the robustness and 
affected tracking accuracy of system. B. P. Kang and partners [36] designed a virtual sliding mode 
controller including conventional sliding mode controller and filter by adding low pass filter to the 
output end of controller to realize robust variable structure control of robot and ensure stability of 
system. M. Hamerlain and partners [37] used a dynamic sliding mode control to realize the tracking 
control of moving robot and avoid the chattering. G. Bartolini and partners [38, 39] realized chattering 
free sliding mode control of mechanical system with unmodeled dynamics and uncertainties by 
switching the two order derivative of function and applied to the tracking control of robot successfully. 

Q. P. Ha and partners [40] adopted a fuzzy sliding mode controller made up of equivalent control, 
switch control and fuzzy control which used the design of fuzzy rule to reduce the impact of switch 
control and chattering effectively. M. Ertugrul and other scholars [41, 42] used respectively the 
learning ability of neural network by combining differently with sliding mode to weaken or avoid 
chattering and improve the robustness of system. Genetic algorithm, support vector machine and other 
methods can also be used to avoid the chattering of sliding mode control. 

4. Discussion and Conclusion 

Though great progress has been made in main technology of exoskeletal robot for upper limbs 
rehabilitation in last decade, there are still some problems in the practice application to be solved. 
Design of connection and fixation between exoskeleton and upper limb of human body currently need 
to be improved more reasonably, by which problems as poor blood circulation or unnatural muscle 
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movement in fixation position would be to avoid and positioning accuracy of exoskeleton would be 
improved to a large extent. In the case of patient’s slow movement current exoskeletal robot systems 
for upper limbs rehabilitation have well speed of response in experimental test results, but in the case 
of patient’s rapid or complex movement the systems generally can’t reach the same speed of response, 
which needs improvement from more excellent design and technology of exoskeletal robot. And in 
data and information transmission for obtaining patient’s intention of motion, method of acquiring 
sEMG signal is easy to be disturbed and restricted by acquiring environment, and method of force 
feedback can’t deal with patient’s rapid or complex movement as its own hysteresis quality. It’s in 
need of developing some more perfect technology for data and information transmission of exoskeletal 
robot systems for upper limbs rehabilitation in the future. Moreover, there is still very large promotion 
space in flexibility, security, environmental protection and degree of comfort of the exoskeletal robot. 
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