88,221 research outputs found

    Discretization of variational regularization in Banach spaces

    Full text link
    Consider a nonlinear ill-posed operator equation F(u)=yF(u)=y where FF is defined on a Banach space XX. In general, for solving this equation numerically, a finite dimensional approximation of XX and an approximation of FF are required. Moreover, in general the given data \yd of yy are noisy. In this paper we analyze finite dimensional variational regularization, which takes into account operator approximations and noisy data: We show (semi-)convergence of the regularized solution of the finite dimensional problems and establish convergence rates in terms of Bregman distances under appropriate sourcewise representation of a solution of the equation. The more involved case of regularization in nonseparable Banach spaces is discussed in detail. In particular we consider the space of finite total variation functions, the space of functions of finite bounded deformation, and the L∞L^\infty--space

    Compatible finite element spaces for geophysical fluid dynamics

    Get PDF
    Compatible finite elements provide a framework for preserving important structures in equations of geophysical uid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical uid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties

    Neural and spectral operator surrogates: unified construction and expression rate bounds

    Full text link
    Approximation rates are analyzed for deep surrogates of maps between infinite-dimensional function spaces, arising e.g. as data-to-solution maps of linear and nonlinear partial differential equations. Specifically, we study approximation rates for Deep Neural Operator and Generalized Polynomial Chaos (gpc) Operator surrogates for nonlinear, holomorphic maps between infinite-dimensional, separable Hilbert spaces. Operator in- and outputs from function spaces are assumed to be parametrized by stable, affine representation systems. Admissible representation systems comprise orthonormal bases, Riesz bases or suitable tight frames of the spaces under consideration. Algebraic expression rate bounds are established for both, deep neural and spectral operator surrogates acting in scales of separable Hilbert spaces containing domain and range of the map to be expressed, with finite Sobolev or Besov regularity. We illustrate the abstract concepts by expression rate bounds for the coefficient-to-solution map for a linear elliptic PDE on the torus

    A Mean-field statistical theory for the nonlinear Schrodinger equation

    Full text link
    A statistical model of self-organization in a generic class of one-dimensional nonlinear Schrodinger (NLS) equations on a bounded interval is developed. The main prediction of this model is that the statistically preferred state for such equations consists of a deterministic coherent structure coupled with fine-scale, random fluctuations, or radiation. The model is derived from equilibrium statistical mechanics by using a mean-field approximation of the conserved Hamiltonian and particle number for finite-dimensional spectral truncations of the NLS dynamics. The continuum limits of these approximated statistical equilibrium ensembles on finite-dimensional phase spaces are analyzed, holding the energy and particle number at fixed, finite values. The analysis shows that the coherent structure minimizes total energy for a given value of particle number and hence is a solution to the NLS ground state equation, and that the remaining energy resides in Gaussian fluctuations equipartitioned over wavenumbers. Some results of direct numerical integration of the NLS equation are included to validate empirically these properties of the most probable states for the statistical model. Moreover, a theoretical justification of the mean-field approximation is given, in which the approximate ensembles are shown to concentrate on the associated microcanonical ensemble in the continuum limit.Comment: 24 pages, 2 figure

    Finite dimensional approximation of a class of constrained nonlinear optimal control problems

    Get PDF
    An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows

    Identification of nonlinear coefficient in a transport equation

    Get PDF
    Considered a problem of identification a nonlinear coefficient in a first order PDE via final observation. The problem is stated as an optimal control problem and solved numerically. Implicit finite difference scheme is used for the approximation of the state equation. A space of control variables is approximated by a sequence of finite-dimensional spaces with increaing dimensions. Finite dimensional problems are solved by a gradient method and numerical results are presented
    • …
    corecore