1,382,852 research outputs found
Existence of the solution to a nonlocal-in-time evolutional problem
This work is devoted to the study of a nonlocal-in-time evolutional problem
for the first order differential equation in Banach space. Our primary
approach, although stems from the convenient technique based on the reduction
of a nonlocal problem to its classical initial value analogue, uses more
advanced analysis. That is a validation of the correctness in definition of the
general solution representation via the Dunford-Cauchy formula. Such approach
allows us to reduce the given existence problem to the problem of locating
zeros of a certain entire function. It results in the necessary and sufficient
conditions for the existence of a generalized (mild) solution to the given
nonlocal problem. Aside of that we also present new sufficient conditions which
in the majority of cases generalize existing results.Comment: This article is an extended translation of the part of Dmytro
Sytnyk's PhD Thesi
Compound orbits break-up in constituents: an algorithm
In this paper decomposition of periodic orbits in bifurcation diagrams are
derived in unidimensional dynamics system , being an
unimodal function. We proof a theorem which states the necessary and sufficient
conditions for the break-up of compound orbits in their simpler constituents. A
corollary to this theorem provides an algorithm for the computation of those
orbits. This process closes the theoretical framework initiated in (Physica D,
239:1135--1146, 2010)
Computed Chaos or Numerical Errors
Discrete numerical methods with finite time-steps represent a practical
technique to solve initial-value problems involving nonlinear differential
equations. These methods seem particularly useful to the study of chaos since
no analytical chaotic solution is currently available. Using the well-known
Lorenz equations as an example, it is demonstrated that numerically computed
results and their associated statistical properties are time-step dependent.
There are two reasons for this behavior. First, chaotic differential equations
are unstable so that any small error is amplified exponentially near an
unstable manifold. The more serious and lesser-known reason is that stable and
unstable manifolds of singular points associated with differential equations
can form virtual separatrices. The existence of a virtual separatrix presents
the possibility of a computed trajectory actually jumping through it due to the
finite time-steps of discrete numerical methods. Such behavior violates the
uniqueness theory of differential equations and amplifies the numerical errors
explosively. These reasons imply that, even if computed results are bounded,
their independence on time-step should be established before accepting them as
useful numerical approximations to the true solution of the differential
equations. However, due to these exponential and explosive amplifications of
numerical errors, no computed chaotic solutions of differential equations
independent of integration-time step have been found. Thus, reports of computed
non-periodic solutions of chaotic differential equations are simply
consequences of unstably amplified truncation errors, and are not approximate
solutions of the associated differential equations.Comment: pages 24, Figures
Linearized analysis versus optimization-based nonlinear analysis for nonlinear systems
For autonomous nonlinear systems stability and input-output properties in small enough (infinitesimally small) neighborhoods of (linearly) asymptotically stable equilibrium points can be inferred from the properties of the linearized dynamics. On the other hand, generalizations of the S-procedure and sum-of-squares programming promise a framework potentially capable of generating certificates valid over quantifiable, finite size neighborhoods of the equilibrium points. However, this procedure involves multiple relaxations (unidirectional implications). Therefore, it is not obvious if the sum-of-squares programming based nonlinear analysis can return a feasible answer whenever linearization based analysis does. Here, we prove that, for a restricted but practically useful class of systems, conditions in sum-of-squares programming based region-of-attraction, reachability, and input-output gain analyses are feasible whenever linearization based analysis is conclusive. Besides the theoretical interest, such results may lead to computationally less demanding, potentially more conservative nonlinear (compared to direct use of sum-of-squares formulations) analysis tools
On comparison of the estimators of the Hurst index and the diffusion coefficient of the fractional Gompertz diffusion process
We study some estimators of the Hurst index and the diffusion coefficient of
the fractional Gompertz diffusion process and prove that they are strongly
consistent and most of them are asymptotically normal. Moreover, we compare the
asymptotic behavior of these estimators with the aid of computer simulations.Comment: 17 pages, 4 figure
Why Patterns Appear Spontaneously in Dissipative Systems?
It is proposed that the spatial (and temporal) patterns spontaneously
appearing in dissipative systems maximize the energy flow through the pattern
forming interface. In other words - the patterns maximize the entropy growth
rate in an extended conservative system (consisting of the pattern forming
interface and the energy bathes). The proposal is supported by examples of the
pattern formation in different systems. No example contradicting the proposal
is known.Comment: 7 pages, 1 figur
Simplicial Nonlinear Principal Component Analysis
We present a new manifold learning algorithm that takes a set of data points
lying on or near a lower dimensional manifold as input, possibly with noise,
and outputs a simplicial complex that fits the data and the manifold. We have
implemented the algorithm in the case where the input data can be triangulated.
We provide triangulations of data sets that fall on the surface of a torus,
sphere, swiss roll, and creased sheet embedded in a fifty dimensional space. We
also discuss the theoretical justification of our algorithm.Comment: 21 pages, 6 figure
Piecewise Volterra modelling of the Duffing oscillator in the frequency domain
When analysing the nonlinear Duffing oscillator, the weak nonlinearity is basically dependent on the amplitude range of the input excitation. The nonlinear differential equation models of such nonlinear oscillators, which can be transformed into the frequency domain, can generally only provide Volterra modelling and analysis in the frequency-domain over a fraction of the entire framework of weak nonlinearity. This paper discusses the problem of using a new non-parametric routine to extend the capability of Volterra analysis, in the frequency domain, to weakly nonlinear Duffing systems at a wider range of excitation amplitude range which the current underlying nonlinear differential equation models fail to address
Four conjectures in Nonlinear Analysis
In this chapter, I formulate four challenging conjectures in Nonlinear
Analysis. More precisely: a conjecture on the Monge-Amp\`ere equation; a
conjecture on an eigenvalue problem; a conjecture on a non-local problem; a
conjecture on disconnectedness versus infinitely many solutions.Comment: arXiv admin note: text overlap with arXiv:1504.01010,
arXiv:1409.5919, arXiv:1612.0819
- …
