3 research outputs found

    Estudio espectral del ritmo eléctrico básico del intestino delgado para la monitorización no invasiva del marcapasos intestinal

    Full text link
    El aparato digestivo permite que los alimentos se conviertan en nutrientes y proporcionen al organismo las calorías y los elementos fundamentales para la vida, al mismo tiempo que se expulsan y eliminan los productos residuales de forma adecuada. La motilidad intestinal es muy importante para conseguir la segmentación del quimo y el tránsito intestinal y está determinada por la actividad mioeléctrica de las capas musculares intestinales. Dicha actividad también se le denomina electroenterograma (EEnG). La señal mioeléctrica es el resultado de una componente de baja frecuencia que en condiciones fisiológicas está siempre presente llamada onda lenta (OL) o ritmo eléctrico básico (BER) que constituye el marcapasos intestinal; y una componente de alta frecuencia llamada spike bursts o potenciales rápidos de acción que está asociada a las contracciones intestinales. El análisis del EEnG es un paso clave para monitorizar la actividad intestinal. El estudio del BER intestinal no sólo proporciona información acerca del ritmo básico de las contracciones del intestino, sino que puede ayudar a diagnosticar algunas patologías gastrointestinales. Para ofrecer esta herramienta como aplicación clínica, el registro de la señal del EEnG debe ser no invasivo. El objetivo de la presente Tesis Doctoral es detectar la actividad del marcapasos intestinal y caracterizar el ritmo eléctrico básico en el EEnG externo, comparándolo y estudiando su relación con el EEnG interno. Las señales analizadas fueron obtenidas simultáneamente en la superficie abdominal y en la serosa intestinal de perros Beagle en estado de ayuno. Los métodos de estimación autoregresivo (AR), autoregresivo de media móvil (ARMA), Prony y clasificación de señales múltiples (MUSIC), se emplearon para determinar la distribución espectral de potencia asociada a la actividad de la onda lenta, tanto en los registros internos como externos. Por otro lado, para estudiar la relación entre el espectro de la señal captada en superficie y las señales internas, se estimaron las funciones de coherencia utilizando los modelos autoregresivo multivariante (ARM) y MUSIC.Moreno Vázquez, JDJ. (2011). Estudio espectral del ritmo eléctrico básico del intestino delgado para la monitorización no invasiva del marcapasos intestinal [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14276Palanci

    Imaging fascicular organisation in mammalian vagus nerve for selective VNS

    Get PDF
    Nerves contain a large number of nerve fibres, or axons, organised into bundles known as fascicles. Despite the somatic nervous system being well understood, the organisation of the fascicles within the nerves of the autonomic nervous system remains almost completely unknown. The new field of bioelectronics medicine, Electroceuticals, involves the electrical stimulation of nerves to treat diseases instead of administering drugs or performing complex surgical procedures. Of particular interest is the vagus nerve, a prime target for intervention due to its afferent and efferent innervation to the heart, lungs and majority of the visceral organs. Vagus nerve stimulation (VNS) is a promising therapy for treatment of various conditions resistant to standard therapeutics. However, due to the unknown anatomy, the whole nerve is stimulated which leads to unwanted off-target effects. Electrical Impedance Tomography (EIT) is a non-invasive medical imaging technique in which the impedance of a part of the body is inferred from electrode measurements and used to form a tomographic image of that part. Micro-computed tomography (microCT) is an ex vivo method that has the potential to allow for imaging and tracing of fascicles within experimental models and facilitate the development of a fascicular map. Additionally, it could validate the in vivo technique of EIT. The aim of this thesis was to develop and optimise the microCT imaging method for imaging the fascicles within the nerve and to determine the fascicular organisation of the vagus nerve, ultimately allowing for selective VNS. Understanding and imaging the fascicular anatomy of nerves will not only allow for selective VNS and the improvement of its therapeutic efficacy but could also be integrated into the study on all peripheral nerves for peripheral nerve repair, microsurgery and improving the implementation of nerve guidance conduits. Chapter 1 provides an introduction to vagus nerve anatomy and the principles of microCT, neuronal tracing and EIT. Chapter 2 describes the optimisation of microCT for imaging the fascicular anatomy of peripheral nerves in the experimental rat sciatic and pig vagus nerve models, including the development of pre-processing methods and scanning parameters. Cross-validation of this optimised microCT method, neuronal tracing and EIT in the rat sciatic nerve was detailed in Chapter 3. Chapter 4 describes the study with microCT with tracing, EIT and selective stimulation in pigs, a model for human nerves. The microCT tracing approach was then extended into the subdiaphragmatic branches of the vagus nerves, detailed in Chapter 5. The ultimate goal of human vagus nerve tracing was preliminarily performed and described in Chapter 6. Chapter 7 concludes the work and describes future work. Lastly, Appendix 1 (Chapter 8) is a mini review on the application of selective vagus nerve stimulation to treat acute respiratory distress syndrome and Appendix 2 is morphological data corresponding to Chapter 4
    corecore