5 research outputs found

    Noninteractive Localization of Wireless Camera Sensors with Mobile Beacon

    Full text link

    Z-path trajectory mechanism for mobile beacon-assisted localization in wireless sensor networks

    Get PDF
    A wireless sensor network consists of many sensors that communicate wirelessly to monitor a physical region. In many applications such as warning systems or healthcare services, it is necessary to enhance the captured data with location information. Determining the coordinates of the randomly deployed sensors is known as the problem of localization. A promising solution for statically deployed sensors is to benefit from a mobile beacon-assisted localization. The main challenge is planning an optimum path for the mobile beacon to ensure the full coverage, increase the accuracy of the estimated position and decrease the required time for localization of resource-constrained sensors. So, this research aims at developing a superior trajectory mechanism for mobile beacon-assisted localization to help unknown sensors to efficiently localize themselves. To achieve this purpose; first, a novel trajectory named Z-path is proposed to guarantee fully localized deployed sensors with higher precision since the path reduces collinear beacon positions and promises shorter localization time; second, Z-path transmission power adjustment scheme named Zpower is developed to dynamically and optimally adjust the transmission power for a reliable transmission while conserving the energy consumption for localization by mobile beacon and unknown sensors; third, Z-path obstacle-handling trajectory mechanism is designed to improve the effectiveness of the proposed path toward obstacles which obstruct the path. Finally, the proposed Z-path obstacle handling mechanism is integrated with the developed power adjustment scheme to improve the energy efficiency of the designed obstacle tolerance mechanism. The performance of the proposed trajectory is evaluated by comparing the efficiency with five benchmark trajectories in terms of localization success, accuracy, energy efficiency, time and ineffective position rate, which is a newly introduced metric by this research to measure the collinearity of the trajectories. Simulation results show that Z-path has successfully localized all 250 deployed sensors with higher precision by at least 5.88% improvement than Localization with a Mobile Anchor based on Trilateration (LMAT) trajectory and 58% improvement than random way point. It also serves as a benchmark path with 93 ineffective positions per node localization as compared with LMAT as a second efficient path by 100 collinear positions and faster trajectory for localization. Furthermore, results revealed that Z-power accomplishes better performance in terms of energy consumption as an average 34% for unknown sensors and 25% for mobile beacon than Z-path. In case of obstacle tolerance mechanism, it ensures higher localization performance in terms of accuracy, time and success around 37.5%, 13% and 11% respectively, as compared to Z-path at the presence of obstacles. The handling mechanism integrated with the power control scheme has reduced energy consumption and improved ineffective position rate compared with Z-path handling trajectory by 35.7% and 54.4%, respectively

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Noninteractive Localization of Wireless Camera Sensors with Mobile Beacon

    No full text
    Recent advances in the application field increasingly demand the use of wireless camera sensor networks (WCSNs), for which localization is a crucial task to enable various location-based services. Most of the existing localization approaches for WCSNs are essentially interactive, i.e., require the interaction among the nodes throughout the localization process. As a result, they are costly to realize in practice, vulnerable to sniffer attacks, inefficient in energy consumption and computation. In this paper, we propose LISTEN, a noninteractive localization approach. Using LISTEN, every camera sensor node only needs to silently listen to the beacon signals from a mobile beacon node and capture a few images until determining its own location. We design the movement trajectory of the mobile beacon node, which guarantees to locate all the nodes successfully. We have implemented LISTEN and evaluated it through extensive experiments. Both the analytical and experimental results demonstrate that it is accurate, cost-efficient, and especially suitable for WCSNs that consist of low-end camera sensors
    corecore