838 research outputs found

    Ambiguity and Communication

    Get PDF
    The ambiguity of a nondeterministic finite automaton (NFA) N for input size n is the maximal number of accepting computations of N for an input of size n. For all k, r 2 N we construct languages Lr,k which can be recognized by NFA's with size k poly(r) and ambiguity O(nk), but Lr,k has only NFA's with exponential size, if ambiguity o(nk) is required. In particular, a hierarchy for polynomial ambiguity is obtained, solving a long standing open problem (Ravikumar and Ibarra, 1989, Leung, 1998)

    Nondeterminism and an abstract formulation of Ne\v{c}iporuk's lower bound method

    Get PDF
    A formulation of "Ne\v{c}iporuk's lower bound method" slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Ne\v{c}iporuk for the size of nondeterministic and parity branching programs is at most O(n3/2/logn)O(n^{3/2}/\log n)

    Amortized Dynamic Cell-Probe Lower Bounds from Four-Party Communication

    Full text link
    This paper develops a new technique for proving amortized, randomized cell-probe lower bounds on dynamic data structure problems. We introduce a new randomized nondeterministic four-party communication model that enables "accelerated", error-preserving simulations of dynamic data structures. We use this technique to prove an Ω(n(logn/loglogn)2)\Omega(n(\log n/\log\log n)^2) cell-probe lower bound for the dynamic 2D weighted orthogonal range counting problem (2D-ORC) with n/polylognn/\mathrm{poly}\log n updates and nn queries, that holds even for data structures with exp(Ω~(n))\exp(-\tilde{\Omega}(n)) success probability. This result not only proves the highest amortized lower bound to date, but is also tight in the strongest possible sense, as a matching upper bound can be obtained by a deterministic data structure with worst-case operational time. This is the first demonstration of a "sharp threshold" phenomenon for dynamic data structures. Our broader motivation is that cell-probe lower bounds for exponentially small success facilitate reductions from dynamic to static data structures. As a proof-of-concept, we show that a slightly strengthened version of our lower bound would imply an Ω((logn/loglogn)2)\Omega((\log n /\log\log n)^2) lower bound for the static 3D-ORC problem with O(nlogO(1)n)O(n\log^{O(1)}n) space. Such result would give a near quadratic improvement over the highest known static cell-probe lower bound, and break the long standing Ω(logn)\Omega(\log n) barrier for static data structures

    Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

    Get PDF
    corecore