290 research outputs found

    Non-visual information display using tactons

    Get PDF
    This paper describes a novel form of display using tactile output. Tactons, or tactile icons, are structured tactile messages that can be used to communicate message to users non visually. A range of different parameters can be used to construct Tactons, e.g.: frequency, amplitude, waveform and duration of a tactile pulse, plus body location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or on mobile and wearable devices

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    Crossmodal spatial location: initial experiments

    Get PDF
    This paper describes an alternative form of interaction for mobile devices using crossmodal output. The aim of our work is to investigate the equivalence of audio and tactile displays so that the same messages can be presented in one form or another. Initial experiments show that spatial location can be perceived as equivalent in both the auditory and tactile modalities Results show that participants are able to map presented 3D audio positions to tactile body positions on the waist most effectively when mobile and that there are significantly more errors made when using the ankle or wrist. This paper compares the results from both a static and mobile experiment on crossmodal spatial location and outlines the most effective ways to use this crossmodal output in a mobile context

    Multidimensional tactons for non-visual information presentation in mobile devices

    Get PDF
    Tactons are structured vibrotactile messages which can be used for non-visual information presentation when visual displays are limited, unavailable or inappropriate, such as in mobile phones and other mobile devices. Little is yet known about how to design them effectively. Previous studies have investigated the perception of Tactons which encode two dimensions of information using two different vibrotactile parameters (rhythm and roughness) and found recognition rates of around 70. When more dimensions of information are required it may be necessary to extend the parameter-space of these Tactons. Therefore this study investigates recognition rates for Tactons which encode a third dimension of information using spatial location. The results show that identification rate for three-parameter Tactons is just 48, but that this can be increased to 81 by reducing the number of values of one of the parameters. These results will aid designers to select suitable Tactons for use when designing mobile displays

    The design and evaluation of a vibrotactile progress bar

    Get PDF
    We present an investigation into the use of Tactons to present progress information. Progress bars are common but must compete for screen space and visual attention with other visual tasks. We created a tactile progress indicator, encoding progress into a series of vibrotactile pulses. An experiment comparing the tactile progress indicator to a standard visual one showed a significant improvement in performance and an overall preference for the tactile display

    A first investigation into the effectiveness of Tactons

    Get PDF
    This paper reports two experiments relating to the design of Tactons (or tactile icons). The first experiment investigated perception of vibro-tactile "roughness" (created using amplitude modulated sinusoids), and the results indicated that roughness could be used as a parameter for constructing Tactons. The second experiment is the first full evaluation of Tactons, and uses three values of roughness identified in the first experiment, along with three rhythms to create a set of Tactons. The results of this experiment showed that Tactons could be a successful means of communicating information in user interfaces, with an overall recognition rate of 71%, and recognition rates of 93% for rhythm and 80% for roughness

    An Empirical Evaluation On Vibrotactile Feedback For Wristband System

    Full text link
    With the rapid development of mobile computing, wearable wrist-worn is becoming more and more popular. But the current vibrotactile feedback patterns of most wrist-worn devices are too simple to enable effective interaction in nonvisual scenarios. In this paper, we propose the wristband system with four vibrating motors placed in different positions in the wristband, providing multiple vibration patterns to transmit multi-semantic information for users in eyes-free scenarios. However, we just applied five vibrotactile patterns in experiments (positional up and down, horizontal diagonal, clockwise circular, and total vibration) after contrastive analyzing nine patterns in a pilot experiment. The two experiments with the same 12 participants perform the same experimental process in lab and outdoors. According to the experimental results, users can effectively distinguish the five patterns both in lab and outside, with approximately 90% accuracy (except clockwise circular vibration of outside experiment), proving these five vibration patterns can be used to output multi-semantic information. The system can be applied to eyes-free interaction scenarios for wrist-worn devices.Comment: 10 pages

    Developing an interactive overview for non-visual exploration of tabular numerical information

    Get PDF
    This thesis investigates the problem of obtaining overview information from complex tabular numerical data sets non-visually. Blind and visually impaired people need to access and analyse numerical data, both in education and in professional occupations. Obtaining an overview is a necessary first step in data analysis, for which current non-visual data accessibility methods offer little support. This thesis describes a new interactive parametric sonification technique called High-Density Sonification (HDS), which facilitates the process of extracting overview information from the data easily and efficiently by rendering multiple data points as single auditory events. Beyond obtaining an overview of the data, experimental studies showed that the capabilities of human auditory perception and cognition to extract meaning from HDS representations could be used to reliably estimate relative arithmetic mean values within large tabular data sets. Following a user-centred design methodology, HDS was implemented as the primary form of overview information display in a multimodal interface called TableVis. This interface supports the active process of interactive data exploration non-visually, making use of proprioception to maintain contextual information during exploration (non-visual focus+context), vibrotactile data annotations (EMA-Tactons) that can be used as external memory aids to prevent high mental workload levels, and speech synthesis to access detailed information on demand. A series of empirical studies was conducted to quantify the performance attained in the exploration of tabular data sets for overview information using TableVis. This was done by comparing HDS with the main current non-visual accessibility technique (speech synthesis), and by quantifying the effect of different sizes of data sets on user performance, which showed that HDS resulted in better performance than speech, and that this performance was not heavily dependent on the size of the data set. In addition, levels of subjective workload during exploration tasks using TableVis were investigated, resulting in the proposal of EMA-Tactons, vibrotactile annotations that the user can add to the data in order to prevent working memory saturation in the most demanding data exploration scenarios. An experimental evaluation found that EMA-Tactons significantly reduced mental workload in data exploration tasks. Thus, the work described in this thesis provides a basis for the interactive non-visual exploration of a broad range of sizes of numerical data tables by offering techniques to extract overview information quickly, performing perceptual estimations of data descriptors (relative arithmetic mean) and managing demands on mental workload through vibrotactile data annotations, while seamlessly linking with explorations at different levels of detail and preserving spatial data representation metaphors to support collaboration with sighted users

    Two-handed navigation in a haptic virtual environment

    Get PDF
    This paper describes the initial results from a study looking at a two-handed interaction paradigm for tactile navigation for blind and visually impaired users. Participants were set the task of navigating a virtual maze environment using their dominant hand to move the cursor, while receiving contextual information in the form of tactile cues presented to their non-dominant hand. Results suggest that most participants were comfortable with the two-handed style of interaction even with little training. Two sets of contextual cues were examined with information presented through static patterns or tactile flow of raised pins. The initial results of this study suggest that while both sets of cues were usable, participants performed significantly better and faster with the static cues
    • …
    corecore