28,901 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Automotive three-microphone voice activity detector and noise-canceller

    Get PDF
    This paper addresses issues in improving hands-free speech recognition performance in car environments. A three-microphone array has been used to form a beamformer with leastmean squares (LMS) to improve Signal to Noise Ratio (SNR). A three-microphone array has been paralleled to a Voice Activity Detection (VAD). The VAD uses time-delay estimation together with magnitude-squared coherence (MSC)

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    The Application of Blind Source Separation to Feature Decorrelation and Normalizations

    Get PDF
    We apply a Blind Source Separation BSS algorithm to the decorrelation of Mel-warped cepstra. The observed cepstra are modeled as a convolutive mixture of independent source cepstra. The algorithm aims to minimize a cross-spectral correlation at different lags to reconstruct the source cepstra. Results show that using "independent" cepstra as features leads to a reduction in the WER.Finally, we present three different enhancements to the BSS algorithm. We also present some results of these deviations of the original algorithm

    BigEAR: Inferring the Ambient and Emotional Correlates from Smartphone-based Acoustic Big Data

    Get PDF
    This paper presents a novel BigEAR big data framework that employs psychological audio processing chain (PAPC) to process smartphone-based acoustic big data collected when the user performs social conversations in naturalistic scenarios. The overarching goal of BigEAR is to identify moods of the wearer from various activities such as laughing, singing, crying, arguing, and sighing. These annotations are based on ground truth relevant for psychologists who intend to monitor/infer the social context of individuals coping with breast cancer. We pursued a case study on couples coping with breast cancer to know how the conversations affect emotional and social well being. In the state-of-the-art methods, psychologists and their team have to hear the audio recordings for making these inferences by subjective evaluations that not only are time-consuming and costly, but also demand manual data coding for thousands of audio files. The BigEAR framework automates the audio analysis. We computed the accuracy of BigEAR with respect to the ground truth obtained from a human rater. Our approach yielded overall average accuracy of 88.76% on real-world data from couples coping with breast cancer.Comment: 6 pages, 10 equations, 1 Table, 5 Figures, IEEE International Workshop on Big Data Analytics for Smart and Connected Health 2016, June 27, 2016, Washington DC, US
    corecore