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ABSTRACT

THE APPLICATION OF BLIND SOURCE SEPARATION TO FEATURE

DECORRELATION AND NORMALIZATION

Manuel Laura, M.S.

University of Pittsburgh, 2005

We apply a Blind Source Separation (BSS) algorithm to the decorrelation of Mel-warped

cepstra. The observed cepstra are modeled as a convolutive mixture of independent “source”

cepstra. The algorithm aims to minimize a cross-spectral correlation at different lags to

reconstruct the source cepstra. Results show that using “independent” cepstra as features

leads to a reduction in the WER.

Finally, we present three different enhancements to the BSS algorithm. We also present

some results of these deviations of the original algorithm.
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1.0 INTRODUCTION

In recent years, a better understanding of speech recognition has been achieved. The rapid

increase in processing power has given speech recognition systems the means to engineer

models and tools that better extract the features of speech. Speech engineers have gathered

knowledge from different fields to better identify and reproduce the human speech. Two of

these fields are digital signal processing DSP and probability and statistics. For example,

speech engineers use digital filters or discrete transforms to manipulate or to study charac-

teristics of the signal that are not obvious in the time domain. We also use statistical models

and concepts to describe signal’s behavior.

Even though we have multiple tools to process speech signals, there are still many prob-

lems to be solved. One of these problems is the large variability and redundancy in speech

features used in speech recognition. Most speech recognition systems model the speech fea-

tures as independent random variables using Gaussian distributions with diagonal covariance

matrices. In reality, the speech features are correlated creating a mismatch between the data

and the model. Approaches such as covariance normalization have been attempted to correct

this mismatch with moderate success.

The solution we propose for this problem is the application of a blind source separation

(BSS) algorithm to decorrelate the speech features. The use of this algorithm to decorre-

late and normalize the speech features decreases the word error rate (WER) of a speech

recognition system, as we show in Chapter 4.

Originally, BSS gave a solution to the the cocktail party problem. This problem is de-

scribed briefly to understand the similarity with our problem. When a person is surrounded

by many “sources” of speech and noise is hard for him or her to focus on a single emitter.

However, a person can establish a conversation with another person or listen to a particular
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noise or sound in the environment. The nature of how the human brain separates the differ-

ent sounds and noises is complex and unknown. Blind Source Separation (BSS) is a solution

to this problem. The approach is called “blind” because it involves no training or apriori

information about the sources. The only data available is the observed mixture of sounds.

The main assumption of this approach is that the unobserved signals are mutually indepen-

dent. In this work we explain how the BSS algorithm manipulates a mixture of signals (the

speech features) to obtain the desired property on them: mutual independence.

BSS have been used to decompose other types of signals besides speech signals; i.e.,

it is not limited to audio signals as it was originally used. Consequently, the approach

has been used in a variety of applications; for example: data analysis and compression,

Bayesian detection, source localization. It has also been used in different fields such as

bioimaging, speech recognition, spectral estimation, etc. In our application, we use the BSS

approach to decompose mel-warped cepstra into a set of independent features for use in

speech recognition.

The Speech Recognition system used to test the BSS algorithms consists of two phases:

the training and the decoding stage. We introduce the BSS algorithm in each stage to

decorrelate speech features. We input the mel-warped cepstra into the BSS algorithm and

use the algorithm as a filter. Including the BSS algorithm in our speech recognition system

has considerably improved the Word Error Rate (WER) of the overall system.

This manuscript is divided into six chapters. In Chapter 1 we give an overview of most

of the tools we use to analyze the BSS algorithm. We divide it into three sections: stochastic

processes, digital signal processing, and speech recognition. In Chapter 2 we formulate

the speech feature decorrelation problem. In Chapter 3 we develop the BSS algorithm. We

subdivide the decorrelation algorithm chapter into five sections. In the first three sections we

explain how to calculate the optimal filter to decorrelate the features. In the fourth section

we show the computational cost of the algorithm. In the last section we give a summary
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of the whole algorithm emphasizing its constraints and parameters. In Chapter 4 we show

and discuss our results graphically and numerically. In Chapter 5 we provide some possible

enhancement to the BSS algorithm. Finally in Chapter 6 we show our conclusions.

Before we go in depth into the BSS algorithm and show its mel-warped cepstrum analysis

application, we briefly review some basic concepts and how they relate to our work.

1.1 STOCHASTIC PROCESSES

Signals can be divided into two groups: those that have a fixed behavior and those that

change randomly. Unfortunately, most real world signals of interest are random or stochastic

like speech. Stochastic signals cannot be modeled by a simple, well-behave mathematical

equation and their future values cannot be completely predicted. Instead, we have to use

tools from probability and statistics to analyze their behavior. Also, knowing an individual

signal is not useful because signals change randomly. Instead average values from a collection

of signals give us insight on the usual behavior of the signals. These collections of signals

are called random processes.

In speech, one can have an idea what word will follow the current one based on grammar

or syntax. However, one cannot be certain of what word will be the next word in a sentence.

Thus, it is a stochastic process. One can use stochastic methods to model speech in an

effective way.

In this section we discuss some basic stochastic concepts: random variables and processes,

independence between random variables, covariance, cross-correlation and cross power spec-

trum.

1.1.1 Random Variables and Processes

A random variable is the mapping from a probability space to a measurable space. This mea-

surable space contents all the possible outcomes yield by the probability space. This mapping
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is non-deterministic or random. For example, picking cards from a deck and recording the

suits yields a random variable with range {spades, clubs, hearts, diamonds}.

A sequence or collection of random variables constitutes a random process. There are

two types of random processes: the countable or discrete and the uncountable or continuous.

The notion of random process is of extreme importance to us because speech is a random

process.

1.1.2 Independence

Two random variables or processes X and Y are statistically independent if and only if the

conditional probability of X given Y , P (X|Y ), is equal to the probability of X. In other

words, this means that Y does not contain any information about X. Thus, knowing Y does

not chance the conditional probability of X.

P (X|Y ) =
P (X, Y )

P (Y )

=
P (X)P (Y )

P (Y )
(1.1)

= P (X)

Equation 1.1 implies that the joint probability of X and Y is equal to the product of the

probability of X times the probability of Y :

P (X, Y ) = P (X)P (Y ) (1.2)

The two vectors X and Y can also be considered to be orthogonal to each other. In our

application, we want to decompose mel-warped cepstra into a set of mutually independent

features. Thus

P (X1, X2, X3, ..., XN) = P (X1)P (X2)P (X3)...P (XN)

where N is the number of features used by the mel-cepstrum analysis. We explain how

we perform this task using the BSS algorithm in Chapter 3.
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1.1.3 Covariance and Cross-Correlation

The covariance between two processes x(t) and y(t), measures how similar the processes are.

This is analogous to the variance of a single variable. More precisely, the covariance between

random processes measures how much the deviation between them match. This is important

to us because signals are random processes, as it is mentioned in the previous section, and

this tool measures how closely related the signals are.

Mathematically, the covariance between x(t)and y(t) is defined as

Cxy(t) = E{(x(t)− µ) (y(t)− ν)} (1.3)

where E{.} represents expected value and µ is equal to the mean of x(t) and ν is equal

to the mean of y(t).

One important property of the covariance is that a positive value indicates that the

two random process tend to increase together. On the other hand a negative value of the

covariance represents that an increase in one random process is accompanied by a decrease

in the other random process.

If two random processes are independent or uncorrelated or if one of them is identical to

its mean at all times, then

Cxy(t) = 0 (1.4)

However, a covariance equal to zero does not mean that the random processes are inde-

pendent. It only means that the two random processes are ”linearly independent.” It does

not say anything about their higher moments.

If the means of the random process are equal to zero equation 1.3 simplifies to

Cxy(t) = E{x(t) y(t)} (1.5)
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Another measurement tools, similar to the covariance is the cross-correlation. The cross-

correlation is another measurement of dependency between random processes. It is defined

as

Rxy(t) = E{x(t) y(t)} (1.6)

The cross-correlation between two random processes is the same as their covariance if

the mean of the random processes is equal to zero.

These concepts are of importance to us because the BSS algorithm is based on the

concepts of covariance and cross-correlation as we will see in Chapter 3

1.1.4 Cross-Power Spectrum

The Cross-Power Spectrum density of two random processes x(t) and y(t) is defined as the

Fourier Transform of the cross-correlation function Rxy(t) as

Rxy(ω) =

∫ ∞

−∞
Rxy(t)e

−j2πftdt (1.7)

1.2 DIGITAL SIGNAL PROCESSING

In this section we cover some basic DSP concepts that help us develop the BSS algorithm

we use to decorrelate speech features. We discuss some basic theory on digital filters and

explain their importance to us.
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1.2.1 Digital Filters

Any “Black Box” that relates an input x[n] to an output y[n] can be considered a digital

filter. Thus, a filter can be a window, an amplifier, a modulator, etc. The output of a linear

time-invariant digital filter is related to the input by an N th order difference equation of the

form:

y[n] =
N∑

k=1

αky[n− k] +
M∑

k=0

βkx[n− k] (1.8)

where x is the input to the system and y is the output. In other words, Equation 1.8

says that the current output depends on the current and past values of the input and past

values of the output. Figure 1.1 shows the block diagram representation of Equation 1.8.

Figure 1.1: Block diagram representation for a general N th order difference equation
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We can describe the filter by finding its frequency response. We can do this by trans-

forming Equation 1.8 to the z domain, factoring Y (z) and finally dividing Y (z) by X(z);

i.e.

Y (z) =
N∑

k=1

αkY (z)z−k +
M∑

k=0

βkX(z)z−k

Y (z)(1−
N∑

k=1

αkz
−k) =

M∑
k=0

βkX(z)z−k

Y (z) =

∑M
k=0 βkX(z)z−k

(1−
∑N

k=1 αkz−k)

Then,

H(z) =
Y (z)

X(z)

=

∑M
k=0 βkz

−k

1−
∑N

k=1 αkz−k
(1.9)

Filters can be classified into two categories: Finite impulse response (FIR) and infinite

impulse response (IIR) filters. The next two subsections briefly discuss these categories.

1.2.1.1 FIR Filters As the name implies it, this type of filter has a finite duration in

time. The filter has no feedback, so equation 1.8 simplifies to

y[n] =
N∑

k=1

αky[n− k] N < ∞ (1.10)

This means that the current output only depends on the current and past values of input.

Figure 1.2 shows the block diagram of a FIR filter.

The frequency response of the filter can be found in the same manner as for the regular

filters. Its frequency response is given by

H(z) =
M∑

k=0

βkz
−k (1.11)
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Figure 1.2: Block diagram representation for a FIR filter

Equation 1.11 is similar to Equation 1.9 but without the denominator. This is due to

the lack of feedback of the filter. The only operators we need to implement this filter are:

delays, multipliers and adders.

Finally, FIR filters are stable due to the finite duration constraint and they are causal

since they only depend on the current and past value of the input.

We will use a FIR filter implementation to find the optimal filter for our BSS algorithm.

1.2.1.2 IIR Filters The complement of FIR filters are IIR filters. This type of filters

has infinite response in time. Equation 1.8 describes them. Thus, the implementation of

the filter includes a feedback path and the frequency response has a denominator. This also

implies that these filters have poles and zeros.

There is more flexibility in the implementation of this type of filter than in the imple-

mentation of FIR filters [2]. However, we will not cover this topic.

Currently we are implementing an IIR filter version of our BSS algorithm. In Chapter 5

we explain the reason for this approach.
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1.3 SPEECH RECOGNITION

In this section we cover Word Error Rate (WER), cepstrum analysis, speech features, and a

basic introduction to blind source separation.

1.3.1 Word Error Rate

The Word Error Rate (WER) of a Speech Recognition (SR) system is a measure of the

accuracy of the system. It calculates a percentage of how many words are recognized correctly

by the system. There are three types of errors in an SR system:

• Substitution.- When the correct word is replaced by an incorrect word in the recognition

sequence.

• Deletion.- When the correct word is replaced by an empty string in the recognition

sequence.

• Insertion.- When an incorrect word is inserted into the recognition sequence.

We can see that from these three types of errors, the WER of a SR system can be greater

than 100% due to the insertion error. We can have a system that not only fails to recognize

every word but also inserts words that were not in the original recognition sequence.

Finally, the WER of a system should be taken as a reference measurement and not as an

absolute measurement of performance; i.e. a system with a greater WER can perform better

in certain cases than another system with a lesser WER. This is because the second system

might miss all the key words in a sentence while the first one only captures the keywords in

the same sentence.

To test the performance of our BSS process, we compare the WER of the SR system with

the BSS algorithm against the WER of the SR system without the BSS algorithm (baseline).
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1.3.2 Cepstrum Analysis

According to some models, speech is composed of two signals convolved together: an ex-

citation sequence and an impulse response of the vocal tract model. The former one has

fast variations while the latter one has slow variations over time and contains the phonetic

information necessary for speech recognition. In speech analysis one wants to eliminate the

excitation sequence in order to clearly capture the vocal tract information. However, these

two signals are not combined in a linear fashion. One needs to use mathematical tools to

analyze only the impulse response of the vocal tract without the interference of the excitation

sequence. Cepstrum analysis is widely used in speech recognition to perform this task. It

allows the user to separate these two signals. The mixture of signals can be represented as

x(n) = e(n) ? θ(n) (1.12)

where x(n) is the speech signal, e(n) is the excitation signal and θ(n) is the impulse

response of the vocal tract.

The ultimate goal of cepstrum analysis is to separate these two components in a linear

manner. One could do this operation preserving the phase of the complex numbers using

complex cepstrum analysis. However, the real version for the analysis is usually exercised

because the phase is not worth the computational complexity [1].

It can be shown that the Discrete Time Fourier Transform (DTFT) of Equation 1.12 is

given by

X(ω) = E(ω)Θ(ω) (1.13)

where ω stands for frequency[1].
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By taking the natural logarithm one turn the multiplication in Equation 1.13 into a

summation of the two components.

Cx(ω) = ln |X(ω)|

= ln |E(ω)Θ(ω)|

= ln |E(ω)|+ ln |Θ(ω)|

= Ce(ω) + Cθ(ω) (1.14)

Finally, one can take the Inverse Discrete Time Fourier Transform (IDTFT) to finally

get the cepstrum signal in the “quefrequency” domain.

cx(n) = F−1{Ce(ω)}+ F−1{Cθ(ω)}

=
1

2π

∫ π

−π

Ce(ω)ejwndω +
1

2π

∫ π

−π

Cθ(ω)ejwndω

cx(n) = ce(n) + cθ(n) (1.15)

Figure 1.3 shows the block diagram representation of how to compute the Real Cepstrum.

Figure 1.3: Block Diagram that represents the calculation of the Real Cepstrum

From the derivation of equation 1.14, one can see that the cepstra function in the fre-

quency domain (ω) is real and even. Thus, one can use a cosine function instead of an

exponential to find the Real Cepstrum in the quefrequency domain.
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The quefrequency domain is a scaled version of the time domain. We are introduced into

this domain after taking the natural logarithm of the frequency domain and then the inverse

Fourier Transform as equations 1.14 and 1.15, show. This domain is called quefrequency

because of its similarity with the frequency domain. Moreover, the term cepstrum comes as

an analogy to spectrum.

A graphical representation of the analysis of the mixed signal, the excitation signal and

the impulse response of the vocal system model is shown in Figure 1.4. This Figure also

shows how the excitation sequence and the impulse response of the vocal system model are

separated in the quefrequency. This characteristic is what we try to exploit with the BSS

algorithm. This is further explained in Chapter 3.

However, this is not the only cepstrum implementation. Stevens and Volkman conducted

experiments in 1937 in which they introduced the mel-scale. Mel is a unit that measures

perceived pitch or frequency of a tone. It does not correspond linearly to a physical frequency

as it is usually measured, in Hz. These two researchers arbitrarily chose a frequency equal

to 1000 Hz and designated it to be the reference point: 1000 mels. Then, some listeners

were asked to change the pitch frequency until it felt as twice and as ten times the reference

frequency. Then they were asked to change the frequency of the pitch to half and 1
10

as of the

reference frequency. Stevens and Volkman labeled these measurements as 2,000 and 10,000

mels and 500 and 100 mels respectively. Then, these measurements were mapped into the

real frequency (Hz) scale. The mapping is shown in Figure 1.5. We can observed in this

figure that the mapping is almost linear below 1 kHz and logarithmic above.

The mel scale exploits auditory principles and decorrelating property of the cepstrum

because of its logarithmic behavior. Moreover, the mel scale is a natural measurement of

speech; i.e. it is a scale that the human brain uses to measure sounds.

This change of scale has proven to provide better results than when using the conventional

cepstrum for many phonetically similar monosyllabic words [9].

The calculation of the mel-cepstrum is not too different from the calculation of the regular

cepstrum. Figure 1.6 shows the block diagram implementation.
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Figure 1.4: Graphical Interpretation of the Cepstral Analysis [1]

The first step that Quatieri suggests is to window the speech signal shown in Equation

1.12 and then take the DTFT of the resultant.

X(n, ωk) =
∞∑

m=−∞

x[m]w[n−m]e−jωkm (1.16)

where ωk = 2π
N

k and N is the length of the DTFT. This is the Short Time Fourier

Transform (STFT).
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Figure 1.5: The mel scale as a function of frequency [6]

Then, Quatieri determines the energy in the STFT weighted by each mel-scale frequency

response. Vl(ω) represents the frequency response of the lth mel-scale filter in Figure 1.6.

Emel(n, l) =
1

Al

Ul∑
k=Ll

|Vl(ωk)X(n, ωk)|2 (1.17)

where Ll and Ul represent the lower and upper frequency indices over which each filter

is different than zero.

Al is equal to
∑Ul

k=Ll
|Vl(ωk)|2 in order to normalize the filters according to their varying

bandwidths. This is done to give equal energy for a flat impulse response [9].

Finally, we can use the fact that the cepstrum is real and even and find real mel-cepstrum

using only a cosine, in the same way we suggested in the real cepstrum case.

Cmel[n, m] =
1

R

R−1∑
l=0

ln{Emel(n, l)} cos

(
2π

R
lm

)
(1.18)
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Figure 1.6: Block diagram of the mel cepstrum calculation

1.3.3 Speech Features

We can divide the cepstrum analysis into two types of results: “low time” and “high time”

results. The “low time” corresponds to small values in the time axis and the ”high time”

corresponds to large values in the time axis. This is similar to low and high frequency. The

“low time” coefficients correspond to the impulse results of the vocal tract and the “high

time” coefficients correspond to the excitation sequence as shown in Figure 1.4. From these

two results we only take the one that corresponds to the “low time” because this section

contains the phonetic information and the shape of the vocal tract. This information is used

to train and decode speech recognition systems. In our speech recognition system, only the

first fifteen coefficients of the cepstrum analysis are considered. The rest of the coefficients

that correspond to the “high time” are neglected. Each of these coefficients can also be

considered as a dimension of the cepstum result.

The first dimension of the cepstra cx(0) usually describes the overall energy contained

in the spectrum. The second dimension, cx(1), measures the balance between the upper

and lower halves of the spectrum. Usually, higher order coefficients are concerned with

increasingly finer features in the spectrum [1].
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Most speech recognition systems assume that the cepstrum or mel-warped cepstrum

features are orthogonal or statistically independent of each other [1]. The cepstrum features

carry redundant information between them. In Chapter 3 we show how the BSS algorithm

enforces the independence of the speech features.

1.3.4 Blind Source Separation

As mentioned before, the Blind Source Separation (BSS) algorithm task is to reconstruct

statistically independent signals. This task is is briefly discussed. Assume a vector of dimen-

sion ds that is composed of statistically independent sources s(t) = [s1(t), s2(t)..., sds(t)]
T .

These sources are convolved with an unknown channel response and mixed to produce the

observation vector of dimension dx, x(t) = [x1(t), x2(t), ..., xdx(t)]
T . In other words,

x(t) =
P∑

τ=0

A(τ)s(t− τ) (1.19)

where A(τ) is the channel impulse response with dsdxP coefficients.

Given x(t), the goal is to recover s(t). If we attempt to use (1.19) to recover s(t) (the

Forward Model approach), we would need to calculate the response matrix A(τ) (not an

easy task) and then hope the matrix is invertible so we could recover the vector of sources.

Another approach is to estimate the sources by passing the observations through a FIR

filter to undo the convolutive and mixing effect of the channel, A(τ), i.e.,

s(t) =

Q∑
τ=0

W(τ)x(t− τ) (1.20)

where W(τ) is an FIR inverse model with dsdxQ coefficients and s(t) is the estimate of

the sources signals. This approach is called the Backward Model approach [10].

To solve the problem proposed in Equation 1.19 or 5.1 numerous approaches have been

presented (e.g., by Cardoso, Herault and Jutten, Pham) for the instantaneous mixture case

(P = 1, and Q = 1) [11], [12], [13]. Also, various methods have been proposed to address

the convolutive mixture case by Yellin and Weinstein, Thi and Jutten, Shamsunder and

Giannaki, [14], [15], [16].
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Initially, it was thought that only decorrelating the measured signals was enough to make

the signals independent [18], [19]. This approach was sufficient to recover the sources for the

instantaneous case of nonwhite signals. However, this solution is not unique when applied

to a convolutive mixture (P > 1 or Q > 1). One has to arbitrarily select a part of the filter

and then, based on this selection, finish calculating the filter. Moreover, the solutions might

be decorrelated but not statistically independent since uncorrelated signals do not imply

independent signals as it was mentioned in Section 1.1.3. In 1993, Weinstein et al clearly

indicated that additional conditions are required to achieve independent signals.

In 2003, Parra and Spence [10] suggested an algorithm that utilizes additional information

provided by non-stationary signals. It incorporates statistics at multiple frequencies and

the effect of additive noise while estimating the independent sources, thereby increasing its

robustness. The algorithm takes into account second order statistic squared of non-stationary

signals. This gives enough conditions to completely describe the FIR filter and reconstruct

independent signals.

We adapt the algorithm by Parra and Spence and apply it to deconvolve multidimensional

mel-warped cepstrum. In our application, we restrict the number of independent sources to

equal the number of observed signals so as not to lose any dimensionality in our acoustic

features.

The BSS algorithm is included in two sections of the speech recognition system: the

training and the decoding stages. Multiple combinations of parameters have been tested to

improve the WER of the system. These combinations are shown in Chapter 4.
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2.0 PROBLEM FORMULATION

Mel-warped cepstrum features are extracted from the same source: the speech signal as shown

in Equation 1.12. Thus, each speech feature is expected to contain unique information about

the speech signal. The features are assumed to be statistically independent; i.e., orthogonal

to each other. However, this is not the case. The features have redundant information.

As we mention in Chapter 1, BSS is used in speech processing to deconvolve an incoming

mixture of speech signals into their sources; i.e., produce output signals statistically inde-

pendent of each other. The features of a speech signal pose a similar problem: they are a

mixture of signals coming from the same source: the speech data. We want the features to

be independent of each other. Thus, we have to impose an independence condition on the

features.

We have implemented the BSS algorithm suggested by Parra and Spence [10] into the

EARS system. The EARS system is a speech recognition system specifically focus on Con-

versational Telephone Speech CTS. It uses 40 hours of Swicthboard training data, DEV01

test set and performed unadapted training and decoding. The baseline’s WER of the system

experiment is 44.99%

We will use the (Backward Model) approach in our application of BSS to speech recogni-

tion. In our model, x(t) represents the observed mel-warped cepstrum features corresponding

to a speaker, with t representing the frame index. Each speaker has multiple utterances.

s(t) represents the new mutually independent features (or bss cepstrum as we call it in the

algorithm) to be used in building the acoustic models.

Initially, we tested the algorithm in Matlab and to improve the computational time, we

implemented the algorithm in C. Then we worked on the interface issues with the EARS

system and placed the BSS program to capture the mel-cepstrum features, process them,
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and output independent mel-cepstrum features. Finally, we optimized the BSS algorithm to

improve the results of the Speech Recognition system.
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3.0 ALGORITHM DEVELOPMENT

The key aspect of the algorithm presented by Parra and Clay [10] is the estimation of the

optimal filter W in the frequency domain by solving simultaneous separation problems for

every frequency. This transforms the time-domain convolutive mixture into an instantaneous

mixture at each frequency. We then define a cost function in the frequency domain that,

when minimized, produces an optimal filter that separates the input mel-cepstrum into

independent mel-cepstra features.

As mentioned in Subsection 1.3.4, the algorithm is based on the FIR backward model

described in Equation (5.1). From this equation, we can see that we need to calculate dsdxQ

coefficients to completely describe the FIR filter.

Figure 3.1 shows a graphical interpretation of the input/output relationship of the BSS

filter for each output. A similar setup is used to estimate each of the ds sources.

The BSS algorithm has three steps:

1. Estimate the cross power spectrum of the observed (CPSO) signals (mel-warped cep-

strum) as a function of blocks of time, Rx(ω, tk).

2. Estimate the optimal filter W that minimizes a Least Squared Cost function, J , based

on the Cross Power Spectrum of the estimated source signals as a function of of blocks

time, Λs(ω, tk).

3. Convolve the optimal FIR filter W with the input mel-warped cepstrum to produce the

final estimate of the independent source signals.

In this Chapter, we discuss in detail the three steps of the BSS algorithm. Moreover, we

show its input parameters and constraints, and the computational cost of the BSS algorithm

[10].
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Figure 3.1: Input/output relation for the first source estimate

3.1 CROSS POWER SPECTRUM OF THE OBSERVED AND ESTIMATED

SIGNAL

The first step of the algorithm is to find the Cross Power Spectrum of the observed signal

(CPSO). Our goal, as stated before, is to find a CPSO function in terms of frequency at

different lags. However, if we want the CPSO functions to keep the linearly independent

condition at the different frequencies, the mel-cepstra are required to be nonstationary.
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Before calculating the CPSO, we analyze the cross-correlation of the instantaneous case

(P = 1 or Q = 1). For this case Equation 1.19 simplifies to

x(t) = As(t) (3.1)

and A only has dxds coefficients. Then the cross correlation of the observation can be

found by

Rx(t) = < x(t) x(t)T >

= A < s(t) s(t)T > AT

= AΛs(t)A
T (3.2)

Since we know the sources are independent, < s(τ) s(τ)T > simplifies to a diagonal

matrix, Λs(τ). Also, we can see that any permutation of scaling corresponding to Λs(t) can

be absorbed by the matrix A. Thus, we can choose the scaling and permutation coefficients

of the coordinates in s. Thus, we can choose Aii = 1, i = 1, ..., ds. This places ds conditions

on our solution.

If we consider the nonstationary case, a set of K equations of the form 3.2 for different

blocks of time: t1, t2, ..., tK and the ds scaling condition gives us a total of Kdx(
dx+1

2
) + ds

constraints. We also know we have dsdx + dsK unknown parameters corresponding to A

and Λs(t1), Λs(t2), ..., Λs(tK). In our case, we have the same number of sources as sensors so

ds = dx. Equating the number of constraints to the number of unknowns, we conclude that

K has to be greater or equal to 2.

On the other hand, the backward model equation (5.1) for the instantaneous case sim-

plifies to

s(t) = Wx(t) (3.3)

Moreover, if we combine this result with the result from Equation 3.1, we get

s(t) = WAs(t) (3.4)
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Using Equation 3.4, we can find the cross correlation of this approximation using the

same procedure as for the forward model case.

Λs(t) = < s(t) sT (t) >

= < WAs(t) [WAs(t)]T >

= < WAs(t) s(t)TATWT >

= WA < s(t) s(t)T > ATWT

= WRx(t)W
T (3.5)

Likewise to the filter in Equation 3.2, we can choose the scaling and permutation of the

coordinates in s so: Wii = 1, i = 1, ..., dx. This places dx conditions on our solution. In the

nonstationary case, a set of K equations of the form 3.5 and the dx scaling conditions gives

us a total of Kds(
ds+1

2
) + dx constraints. At the same time we have dxds + dxK unknown

parameters corresponding to W and Rx(t1), Rx(t2), ..., Rx(tK), .

If we equate the constrains with the unknowns,

Kds
ds + 1

2
+ dx ≥ dsdx + Kdx (3.6)

we can conclude that in order to have enough constraints we need at least K = 2. This

is one of the key constraints for the parameters of the algorithm.

For the convolutive mixture we want to have equations similar to 3.2 and 3.5. However,

we transform the problem in the frequency domain to change the convolutive mixture into

multiple instantaneous mixtures. Consequently, we end up with equations that are functions

of frequency and time. This means that we have to calculate cross power spectrum of the

mel-warped cepstrum at different lags. As we mention in Subsection 1.1.4, cross-power

spectrum is the DTFT of the cross correlation. Thus,

Rx(ω, t) = A(ω)Λs(ω, t)AH(ω) (3.7)

Λs(ω, t) = W(ω)Rx(ω, t)WH(ω) (3.8)
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However, in these equations we are assuming circular convolution instead of linear con-

volution as Equations 1.19 and 5.1 propose. The solution for this problem is to approximate

linear convolution with circular convolution. We can do this by choosing the size of the

DTFT, T , much larger than the size of the channel, A or W, according to the model used.

Thus,

T � P ∨ T � Q (3.9)

for the forward and backward model respectively. This is another of the key constraints

of the algorithm. The size of the DTFT has to be much larger than the size of the filter.

Now, we can calculate the cross power spectrum of the nonstationary mel-warped cep-

strum at different lags. We assume that the mel-warped cepstrum is stationary within the

lags. Moreover, in the stationary cases, the cross correlation does not depend on absolute

time but in the relative time between the signals. Thus,

Rx(t, t + τ) = E{x(t) x(t + τ)}

= Rx(τ) (3.10)

Calculating the cross power spectrum is not an easy task because the resolution of 1
T

is

difficult if the stationary time of the signal is on the order of magnitude of the T or smaller.

The cross-power spectrum that we use is the average of a cross-power spectrum that

diagonalizes for the source signals.

Rx(ω, tk) =
1

NT

N−1∑
n=0

x(ω, tk + nT )xH(ω, tk + nT ) (3.11)

k = 1, 2, ..., K

where N represents the number of intervals used to calculate each cross power spectrum

matrix. N has to be sufficiently large so the result of Equation 3.8 can be modeled as a

diagonal matrix.

25



Finally, to get independent conditions each time we calculate the CPSO, we choose the

time intervals so they do not overlap: tk = kTN . We can enforce this by choosing N such

that it is equal to the total time over the size of the DTFT, T, and total number of of

matrices to diagonalize, K. Thus

N =
Total Number of Frames

KT
(3.12)

where the Total Number of Frames accounts for the Total T ime

Since we want N to be large we have to choose K and T to be as small as possible.

However, we already know that K has to be greater than 2 and that T has to be as large

as possible in order to estimate the linear convolution with a circular convolution. This is a

trade off between the constraints.

If the observations were independent and we have a large enough N, the CPS matrix

would be diagonal for each frequency ω and time tk . The goal is then to estimate source

signals whose CPS matrices are diagonal.

3.2 LEAST SQUARED COST FUNCTION

One way to measure independence is by calculating the Cross Power Spectrum of the sig-

nals. As mention in Subsection 1.1.3 the cross correlation or covariance does not assure

independence in the stationary case.

Thus, we can use the difference between the cross power spectrum of the estimated signals

and that of the independent sources as an error measurement.

E(ω, tk) ≡ Λs(ω, tk)−Λs(ω, tk)

E(ω, tk) = W(ω)Rx(ω, tk)W
T (ω)−Λs(ω, tk) (3.13)

Since we do not know the sources, we cannot calculate Λs(ω, tk). However, we know that

it is a diagonal matrix due to the independence assumption. Thus, E(ω, tk) is set to zero

along the main diagonal.
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Then we can define the cost function for the optimization problem as the sum of the

squared error measurement, E(ω, tk) over all times tk .

J(ω) =
K∑

k=1

||E(ω, tk)||2 (3.14)

Our ultimate goal is to find the optimal filter W(ω). Thus we compute the gradient of

Equation 3.14 with respect of the filter,

δJ(ω)

δW∗(ω)
= 2

K∑
k=1

E(ω, tk)W(ω)Rx(ω, tk) (3.15)

We optimize J(ω) using a Gradient Descent Algorithm (GDA). We choose an identity

filter as the initial guess for the first lag of W(ω).

Then , we calculate the new filter as

Wi+1(ω) = Wi(ω) + (η)
δJ

δW∗(ω)
(3.16)

where η is the learning rate of the algorithm.

The algorithm iterates using Equations 3.15 and 3.16 until convergence is achieved. The

optimal filter is the one that diagonalizes Λs(ω, tk) for every ω and tk.
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3.3 POWER NORMALIZATION

The mel-cepstrum power varies considerably across frequency. Thus, to improve the conver-

gence of the BSS algorithm, we apply a power normalization to the partial derivative of J

with respect of W. Equation 3.17 shows this normalization.

m =

(
K∑

k=1

||Rx(ω, tk)||2
)−1

(3.17)

m improves the performance of the BSS algorithm. Thus, the final equation for the

partial derivative of J with respect of W is

δJ

δW∗(ω)
= 2m

K∑
k=1

E(ω, tk)W(ω)Rx(ω, tk) (3.18)

3.4 COMPUTATIONAL COST

The presented algorithm is relatively fast. We are able to process 40 hours of data in approx-

imately 2 hours in machine time. The BSS algorithm is dominated by the computational

cost of estimating the cross power spectrum of the observed data (O[KNdxT (log T + dx)]),

the computation of the Least Squared Error Cost function(O[KTdxdx(2ds + dx)]) and the

optimization of the filter(O(dxdsKT log T )) [10].
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3.5 SUMMARY

In summary, we have demixed the mel-warped cepstrum features with an FIR filter. We have

done it by transforming the problem in Equation 5.1 into the frequency domain and solving

simultaneously a separation problem for every frequency. This approach is similar to the

instantaneous case in the time domain. We approximate this by using circular convolution

instead of linear convolution.

The BSS algorithm has five parameters that constrain its performance:

1. T : Size of the Discrete Time Fourier Transform.

2. Q : Size of the filter.

3. K : Number of matrices to diagonalize

4. Number of iterations - #: in the GDA.

5. η: learning rate of the GDA.

The constraints on the algorithm based on the parameters are:

• The Length of the Discrete Time Fourier Transform, T, has to be much larger

than the Length of the Filter, Q, in order to properly approximate linear convolution

with circular convolution as shown in Equations 3.7 and 3.8 (T � Q).

• The Number of Matrices to Diagonalize, K, has to be equal or greater than 2 in

order to have enough constraints to solve the equations as Equation 3.6 states. (K ≥ 2).

• The Number of Intervals used to estimate each cross power spectrum of the observed

data, N, must be sufficiently large to produce a robust estimate of the cross power

spectrum of the estimate. Thus, according to Equation 3.12, T and K has to be as

small. However, T has to be relatively greater than Q and K has to be greater than 2

as we just explained.

The FIR filter W (ω) also constrains the algorithm.

• The initial guess for the filter has to be an identity matrix for the first lag and zero

matrices for the other lags.
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• For a given mix source signal, the filter coefficient for the corresponding input signal

has to be unity for the first lag and zero for the other lags, in order to maintain proper

ordering of the estimated sources. This is similar to the previous constraint. This

constraint guarantees that “independent” features from different speakers will have the

same meaning and can be combined to generate the acoustic model.
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4.0 TESTING OF ALGORITHM AND DISCUSSION

To test the effect of the proposed BSS algorithm on decorrelating mel-warped cepstrum

features, we used 40 hours of Swicthboard training data, DEV01 test set and performed

unadapted training and decoding. The baseline WER for this experiment is 44.99%. Table

4.1 below shows the WER and the final value of the cost function for various combinations

of the BSS parameters. The best result we got was a WER equal to 43.80%.

Additional insight into the BSS algorithm may be obtained by examining the coefficients

of the optimal filter. The FIR filter can be represented as a combination of 15 sub-filters

(one for each estimated source). We use the 1st, 3rd, 6th, 9th, 12th and 15th sub-filters to

illustrate our results. All the sub-filter graphs can be found in Appendix .

We present surf plots to get a general idea in 3 dimensions on how the sub-filters behave.

Next we show waterfall plots of the magnitude of the sub-filters against time and mel-

cepstrum features. Finally we show contour maps to get another view of how the sub-filters

behave against time. However, before we analysis these graphs, we discuss the Cost Error

Function J as a function of its parameters.

4.1 COST ERROR FUNCTION AS A FUNCTION OF THE BSS

PARAMETERS

Some characteristics on the Cost Error Function, J were observed. These characteristics are

organized according to parameters.
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• Length of the Filter.- as the length of the filter Q, increases, J decreases. This

behavior is not surprising. By increasing the number of free parameters, the cost function

is expected to decrease.

• Length of the DTFT.- as the length of the DTFT T, increases the final result improves.

This is because the circular convolution used in Equation 3.7 and 3.8 approximates better

the linear convolution of Equation 5.1.

• Number of Matrices to Diagonalize.- as the number of matrices to diagonalize K

increases, the error increases as well. This is because as K increases, the number of

intervals used to estimate the cross power spectrum of the observation N decreases. As

N decreases, the independence assumption gets weaker and the cross power spectrum of

the sources is harder to diagonalize.

• Learning Rate.- as the learning rate η, increases, the error decreases. This is because

the gradient descent method is able to take bigger steps between iterations. However if

the learning rate is too large, the algorithm may wonder around the optimal value as it

tries to converge.

• Number of Iterations.- as the number of iterations increases, the error decreases.

This is because the algorithm has more trials to achieve the optimal filter. However, the

computational time also increases. After a certain number of iterations, the improvement

in the results is not worth the computational time.

Table 4.1 shows all the results we have obtained from the algorithm. We can see how J

changes as a function of its parameters as mentioned above.

4.2 GENERAL FIR FILTER

For all the graphs we present, we use T = 256, Q = 8, K = 2, η = 1.0 and 8 iterations as the

input parameters of the BSS algorithm. These set of parameters produce the lowest WER to

our knowledge: 43.80% in our system. This is because a small K produces a large N so the

cross power spectrum of the observation can be diagonalized as it is desired. Moreover, T
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Table 4.1: BSS Parameters, WER and J

Experiment T Q K # η WER J

Expt 1 128 32 5 8 1 44.58 109

Expt 2 128 8 5 20 1 44.47 96

Expt 3 128 8 5 8 1 44.32 125

Expt 4 512 8 5 8 1 44.48 287

Expt 5 64 8 5 8 1 44.11 88

Expt 6 64 2 5 8 1 44.24 116

Expt 7 64 4 5 8 1 44.41 101

Expt 8 64 8 5 12 1 44.48 76

Expt 9 64 8 5 16 0.7 44.64 78

Expt 10 64 16 5 8 1 44.75 80

Expt 11 64 8 5 8 2 44.29 67

Expt 12 64 8 5 16 2 44.37 52

Expt 13 64 8 6 8 1 44.44 102

Expt 14 64 8 6 8 1.4 44.28 90

Expt 15 64 8 5 8 1.045 44.47 87

Expt 16 64 8 3 8 1 44.22 56

Expt 17 512 8 3 8 1 44.13 177

Expt 18 512 128 3 8 1 44.23 131

Expt 19 512 8 4 8 1 44.27 232

Expt 20 512 8 2 8 1 44.32 119

Expt 21 256 8 2 8 1 43.80 80

Expt 22 256 8 4 8 1 44.43 158

Expt 23 1024 16 2 8 1 44.47 181
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much greater than Q is a good constraint as well because it lets us approximate the circular

convolution as it is mentioned in Chapter 3.

Figure 4.1 displays six sub-filters. Each sub-filter has dimensions dx by Q. Thus, it

gets convolves with all the mel-warped features as Figure 3.1 shows. We can see how each

sub-filter emphasizes only one mel-cepstrum feature: the corresponding one. For example,

the first sub-filter emphasizes the first feature of the mel-cepstra. The emphasis vector is

identically to one at time t1 and identically to zero for the other times.

However, the other dx− 1 dimensions of the sub-filter are not equal to zero, even though

Figure 4.1 might suggest it. To be able to zoom into the other dimensions, we have zero out

Wi−i(0)
1 which is identically to one as mentioned before.

Figure 4.2 shows the same as Figure 4.1 with Wi−i(0) = 0. This Figure gives us a better

perspective of how all the features are convolved with each sub-filter.

From Figure 4.2 it is easy to see that the energy in the sub-filters is concentrated in

a small area. We can also see how the significant sub-filter coefficients appear around the

index of the estimated sources (1, 3, 6, 9, 12, and 15).

4.3 FIR FILTER ANALYZED VS LAG AND FEATURES

Even though we have been able to describe some of the characteristics of the sub-filters, the

angle of the figures is not the most appropriate to analyze the behavior of the sub-filters

against mel-cepstrum features and lag. We can gain additional insight by rotating Figure

4.2 to get a better view of how the sub-filter affects the different features of the mel-cepstra.

Figure 4.3 shows more clearly how the sub-filters surrounding the corresponding feature have

a greater magnitude than the ones further from it. This shows that neighboring features are

more correlated than further features. Thus, the filter removes more redundancy from the

neighboring features than from the ones that are further away.

1i corresponds to the number of the sub-filter being displayed
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We also rotate Figure 4.2 in the opposite direction to see how the sub-filter coefficients

appear against the filter lag. Figure 4.4 shows that the sub-filter coefficients get attenuated

as the lag increases.

4.4 CONTOUR MAPS OF THE FIR FILTER

Figure 4.5 is a display of the contour maps of the sub-filters. It confirms again that the

significant sub-filter coefficients appear around the index of the estimated features. We can

also see in these pictures that most of the energy is at low times.

4.5 WORD ERROR RATE VS COST FUNCTION

Even though we want the Cost Function J to go zero, we have found that the WER does not

necessarily decrease when J decreases. We can see this behavior in Figure 4.6. This figure

plots the WER as a function of J. We can see that the lowest value of the WER does not

correspond to the lowest value of the Cost Function. Moreover, we can see how the largest

point of the Cost Function does not correspond to the Highest WER value. This can be due

to the fact that the WER is not a measurement of independence but accuracy.

4.6 MISCELANEOUS

Figure 4.7 shows the results of summing the sub-filter coefficients along the time dimension

and graphing them against the cepstral dimension for the first and second sub-filters. From

the figure, it is easy to see the emphasis placed on neighboring cepstra as well as the surprising

emphasis on the twelfth cepstrum.
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(a) Sub-filter 1 (b) Sub-filter-3

(c) Sub-filter 6 (d) Sub-filter-9

(e) Sub-filter 12 (f) Sub-filter-15

Figure 4.1: Surf Plot corresponding to 6 sub-filters. We can see an emphasis on the mel-

cepstrum dimension corresponding to the sub-filter.
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(a) Sub-filter 1 (b) Sub-filter-3

(c) Sub-filter 6 (d) Sub-filter-9

(e) Sub-filter 12 (f) Sub-filter-15

Figure 4.2: Surf Plot corresponding to 6 sub-filters without the emphasis. We have deleted

the vector corresponding to the corresponding to the mel-cepstrum feature to get a better

perspective of the other vectors.
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(a) Sub-filter 1 (b) Sub-filter-3

(c) Sub-filter 6 (d) Sub-filter-9

(e) Sub-filter 12 (f) Sub-filter-15

Figure 4.3: Waterfall plot of the sub-filters against mel-cepstra features.
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(a) Sub-filter 1 (b) Sub-filter-3

(c) Sub-filter 6 (d) Sub-filter-9

(e) Sub-filter 12 (f) Sub-filter-15

Figure 4.4: Waterfall plot of the sub-filters against time.

39



(a) Sub-filter 1 (b) Sub-filter-3

(c) Sub-filter 6 (d) Sub-filter-9

(e) Sub-filter 12 (f) Sub-filter-15

Figure 4.5: Contour plot of the sub-filters.
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Figure 4.6: Word Error Rate VS Cost error function, J

Figure 4.7: Summed Magnitude of the sub-Filter 1 and Sub-Filter 2 Coefficients over Time.
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5.0 ENHANCEMENT OF THE ALGORITHM

In order to improve the performance of the FIR filter we have tried some modifications of

the original algorithm. We made three changes:

• Separating the mel-warped features coming from each speaker into multiple lag sections

and analyzing each section with a different filter; i.e., having multiple filters per speaker

instead of 1.

• Using an anticausal filter instead of a causal filter.

• Using an IIR filter design instead of an FIR filter.

In this chapter we discuss these approaches and present the results we have obtained.

The IIR filter approach minimizes the Cost Error function. The results obtained with the

other two approaches are not as encouraging as the IIR results.

5.1 MULTIPLE FILTERS

We separated the speaker features coming into the BSS algorithm from each speaker into

equally distributed blocks. This seems reasonable because the data is nonstationary and can

vary substantially from the first to the last block. Thus, we calculate an FIR filter for each

block. The WER’s obtained were better than the baseline WER but not as good as when we

keep all the information together.

Some possible reasons for this results are:

• The constraints that we summarize in Section 3.5 are not met. For example, since we

are breaking the features into different blocks, we have fewer frames to estimate each
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Table 5.1: BSS Parameters and WER for using multiple filters

Experiment T Q K # η m WER

Expt 1 64 8 5 8 1 3 44.58

Expt 2 256 8 2 8 1 2 44.39

cross power spectrum of the observation. Thus, the number of intervals used to estimate

each cross power spectrum matrix, N, might not be big enough to model the cross power

spectrum of the estimation as diagonal

• Another reason is that the data should not be equally distributed into the lags. Probably

we are separating the data at points that it should not be separated.

The results we have obtained are shown in Table 5.1. The number of filters used is

represented as m.

These results reaffirm what we said before. The smaller K is and the bigger the difference

between T and Q is, the better WER we obtained. However, if we compare these results

with the original case, we can see that the WER is better in both cases: 44.11% and 43.80%.

5.2 FILTER WITH CAUSAL AND ANTICAUSAL COMPONENTS

The filter we used to decorrelate the mel cepstrum features is causal. This means that it

only uses current and past values of the input. However, in speech we can predict some of

the future inputs. Thus, it is possible to implement the FIR filter using the current, past

and future values of the observation. Thus, the backward model equation changes to
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s(t) =

Q∑
τ=−P

W(τ)x(t− τ) (5.1)

where P is the length of the anticausal part of the filter. Thus, the total length of the

filter is

Length of the filter = P + 1 + Q (5.2)

The 1 in the equation represents the 0 position.

To implement this new filter we can derive a new set of equations and write a new

algorithm. However, we can also reuse the causal algorithm we used to decorrelate the mel

cepstrum features. We can just advance the filter P positions when calculating it. However,

we have to enforce that the P th position of the new filter corresponds to the 0 position of the

anticausal filter. This means that in this position we should have a diagonal fill with ones.

Moreover, we have to keep enforcing that we have zeros in all the other diagonals. These

conditions enforce the independence requirement. Finally, when convolving the new filter

with the features, we have to discard the first P results because they correspond to noise

We expect this algorithm to perform better than the original BSS algorithm because the

length of the filter is longer. However, we might need to use a longer FFT so we do not

violate algorithm constraints.

This idea is still in a developing stage, thus we have not implemented it.

5.3 IIR FILTER

The BSS algorithm that we have implemented corresponds to an FIR filter, W(τ). Moreover,

the channel effect A(τ) that we are trying to undo is also assumed to be an FIR filter. Thus,

we are trying to undo an FIR filter with another FIR filter. This cancellation gives us our

estimate s(t) to equal the original signal s(t) as Parra and Spence propose [10]:
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s(t) =

Q∑
τ=0

W(τ)x(t− τ)

(5.3)

where W(τ) is the FIR filter that decorrelates the sources and

x(t) =
P∑

τ=0

A(τ)s(t− τ) (5.4)

Even though this approach has demonstrated good performance, it is not intuitive in the

sense that we use an FIR filter to undo another FIR filter. It would be more intuitive to

eliminate the mixing of the channel with an IIR filter approach as:

s(t) =

Q∑
τ=0

W(τ)x[t− τ ] +
P∑

τ=1

V(τ)s[t− τ ] (5.5)

Thus, we will keep our FIR channel assumption and we will apply the BSS algorithm

using an IIR filter. To approximate the filter, we follow a similar approach as Parra and

Spence suggest. We start with the simplest IIR filter we can use to invert the FIR filter and

then generalize the results to the convolutive case at multiple frequencies.

The general IIR filter takes into consideration the current and past values of the input

and the previous values of the output in order to calculate the current output. Initially,

the IIR filter that we use to undo the effect of the instantaneous channel only considers the

current input and the previous output. Thus,

s(t) = Wx(t) + Vs[t− 1] (5.6)

where

x(t) = As(t) (5.7)
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To find the cross-correlation of the observation we follow a similar approach as the one

discuss in Chapter 3. Then, the cross-correlation of the observation is given by

Rx(t) = AΛs(t)A
T (5.8)

On the other hand, the cross-correlation of the estimated signal can be calculated as

Λs(t) = < s(t) sT (t) >

= < Wx(t) + Vs(t− 1) [Wx(t) + Vs(t− 1)]T >

= Wx(t)xT (t)WT + Wx(t)sT (t− 1)VT + Vs(t− 1)xT (t)WT + Vs(t− 1)sT (t− 1)VT

= WRx(t)W
T + Wx(t)sT (t− 1)VT + Vs(t− 1)xT (t)WT + VΛs(t− 1)VT

= WRx(t)W
T + WAs(t)sT (t− 1)VT + Vs(t− 1)sT (t)ATWT + VΛs(t)V

T

There is no reason to believe that the estimation of the signal and the actual signal are

related at different lags. Thus

s(t)sT (t− 1) = 0

s(t− 1)sT (t) = 0

Finally, the cross-correlation of the estimated signal simplifies to

Λs(t) = WRx(t)W
T + VΛs(t)V

T

This can be rewritten in the form

Λs(t)−VΛs(t)V
T = WRx(t)W

T (5.9)

Equation 5.9 looks similar to the Lyapunov equation:

M−AMAT = C (5.10)
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The solution for the Lyapunov equation is given by [7]:

M =
∞∑

m=0

(AT )mNAm (5.11)

The only assumption of this result is that the magnitudes of all the eigenvalues of A are

less than one. This is a reasonable assumption in our case because the deviations that the

backward path add to the system are minimum.

Thus, the cross-correlation of our observation is:

Λs(t) =
∞∑

m=0

VmWRx(t)W
T (VT )m (5.12)

Using the same justification as when deriving the FIR BSS algorithm, we can take our

result one step further into the convolutive case assuming a FFT much longer than the size

of the filters W and V and solve the problem in the frequency domain at multiple lags. Our

error measurement is now

E(ω, tk) ≡ Λs(ω, tk)−Λs(ω, tk)

E(ω, tk) = W(ω)Rx(ω, tk)W
T (ω) + V(ω)Λs(ω, tk)V

T (ω)−Λs(ω, tk) (5.13)

The cost function remains as

J(ω) =
K∑

k=1

||E(ω, tk)||2 (5.14)

Now to calculate both optimal filters W and V, we have to compute the gradient of the

cost function with respect of the filters,

δJ(ω)

δW∗(ω)
= 2

K∑
k=1

E(ω, tk)W(ω)Rx(ω, tk) (5.15)

δJ(ω)

δV∗(ω)
= 2

K∑
k=1

E(ω, tk)V(ω)Λs(ω, tk) (5.16)
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where Rx(ω, tk) is the same cross power spectrum of the observed signal as we use to

calculate the FIR model:

Rx(ω, tk) =
1

NT

N−1∑
n=0

x(ω, tk + nT )xH(ω, tk + nT ) (5.17)

k = 1, , 2, ..., , K

We optimize the cost function in the same manner as before: using a Gradient Descent

Method.

Finally, we have to normalize the backward filter V using the cross power spectrum of

the estimated signal in the same way we normalize the forward filter W. Otherwise, the

estimation is not accurate.

We have not implemented this function in C so we do not have the WER of the speech

recognition system after using it. However, we have implemented it in Matlab and obtained

some encouraging results. The Cost Error function of the algorithm gets minimized. This is

an indication that a further level of independence is obtained by the mel-warped features.
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6.0 CONCLUSIONS

In this work, we applied a BSS algorithm to the decorrelation of mel-warped cepstra for use

as acoustic features in speech recognition. The BSS algorithm is based on a backward model

approach suggested by Parra and Spence [10] in 2000. The algorithm produces an optimal

FIR filter in the frequency that decorrelates the mel-warped cepstrum features at different

lags.

The algorithm generates a set of independent features that minimize a cross spectral

distance measure. The algorithm produces an improvement in WER for many combinations

of the algorithm parameters. The optimal filter coefficients demonstrate the interdependence

among the cepstra.

The best WER we obtained in the EARS system was 43.80%. This is 1.2% better than

the baseline WER. This is a significant improvement based on the computational time added

to the system. A lower WER is expected if more hours of training data were available.

Three different types of enhancements have been tried on the algorithm. None of the en-

hancements produced any further improvement on the system. However, the results obtained

were always better than the baseline results.
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APPENDIX

GRAPHS

In this appendix we collect the graphs for every sub-filter. The parameters chosen for the

filter are the ones corresponding to our best result: WER equal to 43.80%.
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A1: Sub-filter 1
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A2: Sub-filter 2
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A3: Sub-filter 3
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A4: Sub-filter 4
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A5: Sub-filter 5
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A6: Sub-filter 6
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A7: Sub-filter 7
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A8: Sub-filter 8
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A9: Sub-filter 9
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A10: Sub-filter 10
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A11: Sub-filter 11
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A12: Sub-filter 12
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A13: Sub-filter 13
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A14: Sub-filter 14
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(a) Surf plot of the complete sub-filters (b) Surf plot of the de-emphasis sub-filter

(c) Waterfall plot of the sub-filter Vs Mel-
cepstra features

(d) Waterfall plot of the sub-filter Vs lag

(e) Contour plot of the sub-filter

Figure A15: Sub-filter 15
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