2,755 research outputs found

    Multi-photon entanglement and interferometry

    Full text link
    Multi-photon interference reveals strictly non-classical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes from multi-photon state manipulation. We review the progress, both theoretical and experimental, of this rapidly advancing research. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification and quantum repeater), and quantum computation with linear optics. We shall limit the scope of our review to "few photon" phenomena involving measurements of discrete observables.Comment: 71 pages, 38 figures; updated version accepted by Rev. Mod. Phy

    Quantum information with continuous variables

    Full text link
    Quantum information is a rapidly advancing area of interdisciplinary research. It may lead to real-world applications for communication and computation unavailable without the exploitation of quantum properties such as nonorthogonality or entanglement. We review the progress in quantum information based on continuous quantum variables, with emphasis on quantum optical implementations in terms of the quadrature amplitudes of the electromagnetic field.Comment: accepted for publication in Reviews of Modern Physic

    Spatial correlations in parametric down-conversion

    Full text link
    The transverse spatial effects observed in photon pairs produced by parametric down-conversion provide a robust and fertile testing ground for studies of quantum mechanics, non-classical states of light, correlated imaging and quantum information. Over the last 20 years there has been much progress in this area, ranging from technical advances and applications such as quantum imaging to investigations of fundamental aspects of quantum physics such as complementarity relations, Bell's inequality violation and entanglement. The field has grown immensely: a quick search shows that there are hundreds of papers published in this field. The objective of this article is to review the building blocks and major theoretical and experimental advances in the field, along with some possible technical applications and connections to other research areas.Comment: 116 pages, 35 figures. To appear in Physics Report

    Theoretical Engineering and Satellite Comlink of a PTVD-SHAM System

    Full text link
    This paper focuses on super helical memory system's design, 'Engineering, Architectural and Satellite Communications' as a theoretical approach of an invention-model to 'store time-data'. The current release entails three concepts: 1- an in-depth theoretical physics engineering of the chip including its, 2- architectural concept based on VLSI methods, and 3- the time-data versus data-time algorithm. The 'Parallel Time Varying & Data Super-helical Access Memory' (PTVD-SHAM), possesses a waterfall effect in its architecture dealing with the process of voltage output-switch into diverse logic and quantum states described as 'Boolean logic & image-logic', respectively. Quantum dot computational methods are explained by utilizing coiled carbon nanotubes (CCNTs) and CNT field effect transistors (CNFETs) in the chip's architecture. Quantum confinement, categorized quantum well substrate, and B-field flux involvements are discussed in theory. Multi-access of coherent sequences of 'qubit addressing' in any magnitude, gained as pre-defined, here e.g., the 'big O notation' asymptotically confined into singularity while possessing a magnitude of 'infinity' for the orientation of array displacement. Gaussian curvature of k(k<0) is debated in aim of specifying the 2D electron gas characteristics, data storage system for defining short and long time cycles for different CCNT diameters where space-time continuum is folded by chance for the particle. Precise pre/post data timing for, e.g., seismic waves before earthquake mantle-reach event occurrence, including time varying self-clocking devices in diverse geographic locations for radar systems is illustrated in the Subsections of the paper. The theoretical fabrication process, electromigration between chip's components is discussed as well.Comment: 50 pages, 10 figures (3 multi-figures), 2 tables. v.1: 1 postulate entailing hypothetical ideas, design and model on future technological advances of PTVD-SHAM. The results of the previous paper [arXiv:0707.1151v6], are extended in order to prove some introductory conjectures in theoretical engineering advanced to architectural analysi

    Quantum photonics at telecom wavelengths based on lithium niobate waveguides

    Get PDF
    International audienceIntegrated optical components on lithium niobate play a major role in standard high-speed communication systems. Over the last two decades, after the birth and positioning of quantum information science, lithium niobate waveguide architectures have emerged as one of the key platforms for enabling photonics quantum technologies. Due to mature technological processes for waveguide structure integration, as well as inherent and efficient properties for nonlinear optical effects, lithium niobate devices are nowadays at the heart of many photon-pair or triplet sources, single-photon detectors, coherent wavelength-conversion interfaces, and quantum memories. Consequently, they find applications in advanced and complex quantum communication systems, where compactness, stability, efficiency, and interconnectability with other guided-wave technologies are required. In this review paper, we first introduce the material aspects of lithium niobate, and subsequently discuss all of the above mentioned quantum components, ranging from standard photon-pair sources to more complex and advanced circuits

    Photonic Entanglement for Fundamental Tests and Quantum Communication

    Full text link
    Entanglement is at the heart of fundamental tests of quantum mechanics like tests of Bell-inequalities and, as discovered lately, of quantum computation and communication. Their technological advance made entangled photons play an outstanding role in entanglement physics. We give a generalized concept of qubit entanglement and review the state of the art of photonic experiments.Comment: 54 pages, 33 figures. Review article submitted to QIC (Rinton

    Quantum information with Gaussian states

    Full text link
    Quantum optical Gaussian states are a type of important robust quantum states which are manipulatable by the existing technologies. So far, most of the important quantum information experiments are done with such states, including bright Gaussian light and weak Gaussian light. Extending the existing results of quantum information with discrete quantum states to the case of continuous variable quantum states is an interesting theoretical job. The quantum Gaussian states play a central role in such a case. We review the properties and applications of Gaussian states in quantum information with emphasis on the fundamental concepts, the calculation techniques and the effects of imperfections of the real-life experimental setups. Topics here include the elementary properties of Gaussian states and relevant quantum information device, entanglement-based quantum tasks such as quantum teleportation, quantum cryptography with weak and strong Gaussian states and the quantum channel capacity, mathematical theory of quantum entanglement and state estimation for Gaussian states.Comment: 170 pages. Minors of the published version are corrected and listed in the Acknowledgement part of this versio
    corecore