45 research outputs found

    Cooperative Non-Orthogonal Multiple Access in 5G Systems

    Full text link
    Non-orthogonal multiple access (NOMA) has recently received considerable attention as a promising candidate for 5G systems. A key feature of NOMA is that users with better channel conditions have prior information about the messages of the other users. This prior knowledge is fully exploited in this paper, where a cooperative NOMA scheme is proposed. Outage probability and diversity order achieved by this cooperative NOMA scheme are analyzed, and an approach based on user pairing is also proposed to reduce system complexity in practice

    NOMA and interference limited satellite scenarios

    Get PDF
    This paper deals with the problem of non-orthogonal multiple access (NOMA) in multibeam satellite systems, where the signals are jointly precoded. It is considered that the number of frames that are simultaneously transmitted is higher than the number of feeds, reducing the precoding interference mitigation capabilities as the system becomes overloaded. In order to solve this problem, we assume that the satellite user terminals are able to perform multi-user detection to mitigate the interference. In the current NOMA approach, it is assumed a successive interference cancellation (SIC) receiver. To increase the spectral efficiency, this paper investigates NOMA with simultaneous non-unique detection (SND). Compared to the case where user terminals perform single user detection (SUD), conventional scheduling heuristic rules do not longer apply in this scenario. Therefore, different scheduling algorithms are proposed considering both SIC and SND strategies. As the numerical evaluations show, SND yields larger average data rates than the SIC receiver. Concerning the scheduling, the best strategy is to pair users with highly correlated channels and the lowest channel gain difference. It is also shown that the sum-rate can be increased in overloaded satellite systems with respect to satellite scenarios, where the number of transmitted frames and feeds is the same.Peer ReviewedPostprint (author's final draft

    Performance Evaluation of Massive MIMO with Beamforming and Non Orthogonal Multiple Access based on Practical Channel Measurements

    Get PDF
    International audienceThis paper presents a comprehensive performance analysis of a massive multiple-input multiple-output (MIMO) system using non-orthogonal multiple access (NOMA) in both indoor and outdoor environments, based on practical channel measurements. The latter are performed using frequency-domain channel sounding experiments conducted at 3.5 GHz with 18 MHz bandwidth. Multiuser beamforming and NOMA clustering are used in the massive MIMO system. The system performance is evaluated in terms of sum-rate capacity for two precoding schemes: zero-forcing (ZF) and maximum ratio transmission (MRT). Two inter-beam power allocation (PA) schemes are investigated: equal PA and water filling. Fractional transmit PA (FTPA) is used to perform intra-cluster PA between paired users. The study allows the identification of practical scenarios that are propitious to NOMA with beamforming. Results show that NOMA is particularly interesting with MRT, compared to ZF, especially when combined with water filling. However, ZF generally outperforms MRT for all system configurations
    corecore