150 research outputs found

    A sparse decomposition of low rank symmetric positive semi-definite matrices

    Get PDF
    Suppose that A∈RN×NA \in \mathbb{R}^{N \times N} is symmetric positive semidefinite with rank K≤NK \le N. Our goal is to decompose AA into KK rank-one matrices ∑k=1KgkgkT\sum_{k=1}^K g_k g_k^T where the modes {gk}k=1K\{g_{k}\}_{k=1}^K are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where AA is the covariance function and is intractable to solve in general. In this paper, we partition the indices from 1 to NN into several patches and propose to quantify the sparseness of a vector by the number of patches on which it is nonzero, which is called patch-wise sparseness. Our aim is to find the decomposition which minimizes the total patch-wise sparseness of the decomposed modes. We propose a domain-decomposition type method, called intrinsic sparse mode decomposition (ISMD), which follows the "local-modes-construction + patching-up" procedure. The key step in the ISMD is to construct local pieces of the intrinsic sparse modes by a joint diagonalization problem. Thereafter a pivoted Cholesky decomposition is utilized to glue these local pieces together. Optimal sparse decomposition, consistency with different domain decomposition and robustness to small perturbation are proved under the so called regular-sparse assumption (see Definition 1.2). We provide simulation results to show the efficiency and robustness of the ISMD. We also compare the ISMD to other existing methods, e.g., eigen decomposition, pivoted Cholesky decomposition and convex relaxation of sparse principal component analysis [25] and [40]

    Sparse Non-negative Matrix Factorization for Mesh Segmentation

    Get PDF
    We present a method for 3D mesh segmentation based on sparse non-negative matrix factorization (NMF). Image analysis techniques based on NMF have been shown to decompose images into semantically meaningful local features. Since the features and coefficients are represented in terms of non-negative values, the features contribute to the resulting images in an intuitive, additive fashion. Like spectral mesh segmentation, our method relies on the construction of an affinity matrix which depends on the geometric properties of the mesh. We show that segmentation based on the NMF is simpler to implement, and can result in more meaningful segmentation results than spectral mesh segmentation

    An alternating direction and projection algorithm for structure-enforced matrix factorization

    Get PDF
    Structure-enforced matrix factorization (SeMF) represents a large class of mathematical models appearing in various forms of principal component analysis, sparse coding, dictionary learning and other machine learning techniques useful in many applications including neuroscience and signal processing. In this paper, we present a unified algorithm framework, based on the classic alternating direction method of multipliers (ADMM), for solving a wide range of SeMF problems whose constraint sets permit low-complexity projections. We propose a strategy to adaptively adjust the penalty parameters which is the key to achieving good performance for ADMM. We conduct extensive numerical experiments to compare the proposed algorithm with a number of state-of-the-art special-purpose algorithms on test problems including dictionary learning for sparse representation and sparse nonnegative matrix factorization. Results show that our unified SeMF algorithm can solve different types of factorization problems as reliably and as efficiently as special-purpose algorithms. In particular, our SeMF algorithm provides the ability to explicitly enforce various combinatorial sparsity patterns that, to our knowledge, has not been considered in existing approaches

    Dictionary Learning-Based Speech Enhancement

    Get PDF
    • …
    corecore