6,559 research outputs found

    Decoding the Encoding of Functional Brain Networks: an fMRI Classification Comparison of Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA), and Sparse Coding Algorithms

    Full text link
    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet mathematical constraints such as sparse coding and positivity both provide alternate biologically-plausible frameworks for generating brain networks. Non-negative Matrix Factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks for different constraints are used as basis functions to encode the observed functional activity at a given time point. These encodings are decoded using machine learning to compare both the algorithms and their assumptions, using the time series weights to predict whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. For classifying cognitive activity, the sparse coding algorithm of L1L1 Regularized Learning consistently outperformed 4 variations of ICA across different numbers of networks and noise levels (p<<0.001). The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy. Within each algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<<0.001). The success of sparse coding algorithms may suggest that algorithms which enforce sparse coding, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA

    A Method for Finding Structured Sparse Solutions to Non-negative Least Squares Problems with Applications

    Full text link
    Demixing problems in many areas such as hyperspectral imaging and differential optical absorption spectroscopy (DOAS) often require finding sparse nonnegative linear combinations of dictionary elements that match observed data. We show how aspects of these problems, such as misalignment of DOAS references and uncertainty in hyperspectral endmembers, can be modeled by expanding the dictionary with grouped elements and imposing a structured sparsity assumption that the combinations within each group should be sparse or even 1-sparse. If the dictionary is highly coherent, it is difficult to obtain good solutions using convex or greedy methods, such as non-negative least squares (NNLS) or orthogonal matching pursuit. We use penalties related to the Hoyer measure, which is the ratio of the l1l_1 and l2l_2 norms, as sparsity penalties to be added to the objective in NNLS-type models. For solving the resulting nonconvex models, we propose a scaled gradient projection algorithm that requires solving a sequence of strongly convex quadratic programs. We discuss its close connections to convex splitting methods and difference of convex programming. We also present promising numerical results for example DOAS analysis and hyperspectral demixing problems.Comment: 38 pages, 14 figure

    A Unified Framework for Sparse Non-Negative Least Squares using Multiplicative Updates and the Non-Negative Matrix Factorization Problem

    Full text link
    We study the sparse non-negative least squares (S-NNLS) problem. S-NNLS occurs naturally in a wide variety of applications where an unknown, non-negative quantity must be recovered from linear measurements. We present a unified framework for S-NNLS based on a rectified power exponential scale mixture prior on the sparse codes. We show that the proposed framework encompasses a large class of S-NNLS algorithms and provide a computationally efficient inference procedure based on multiplicative update rules. Such update rules are convenient for solving large sets of S-NNLS problems simultaneously, which is required in contexts like sparse non-negative matrix factorization (S-NMF). We provide theoretical justification for the proposed approach by showing that the local minima of the objective function being optimized are sparse and the S-NNLS algorithms presented are guaranteed to converge to a set of stationary points of the objective function. We then extend our framework to S-NMF, showing that our framework leads to many well known S-NMF algorithms under specific choices of prior and providing a guarantee that a popular subclass of the proposed algorithms converges to a set of stationary points of the objective function. Finally, we study the performance of the proposed approaches on synthetic and real-world data.Comment: To appear in Signal Processin
    • …
    corecore