470 research outputs found

    Robust Decentralized State Estimation and Tracking for Power Systems via Network Gossiping

    Full text link
    This paper proposes a fully decentralized adaptive re-weighted state estimation (DARSE) scheme for power systems via network gossiping. The enabling technique is the proposed Gossip-based Gauss-Newton (GGN) algorithm, which allows to harness the computation capability of each area (i.e. a database server that accrues data from local sensors) to collaboratively solve for an accurate global state. The DARSE scheme mitigates the influence of bad data by updating their error variances online and re-weighting their contributions adaptively for state estimation. Thus, the global state can be estimated and tracked robustly using near-neighbor communications in each area. Compared to other distributed state estimation techniques, our communication model is flexible with respect to reconfigurations and resilient to random failures as long as the communication network is connected. Furthermore, we prove that the Jacobian of the power flow equations satisfies the Lipschitz condition that is essential for the GGN algorithm to converge to the desired solution. Simulations of the IEEE-118 system show that the DARSE scheme can estimate and track online the global power system state accurately, and degrades gracefully when there are random failures and bad data.Comment: to appear in IEEE JSA

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Geographic Gossip: Efficient Averaging for Sensor Networks

    Full text link
    Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of nn and n\sqrt{n} respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy ϵ\epsilon using O(n1.5lognlogϵ1)O(\frac{n^{1.5}}{\sqrt{\log n}} \log \epsilon^{-1}) radio transmissions, which yields a nlogn\sqrt{\frac{n}{\log n}} factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.Comment: To appear, IEEE Transactions on Signal Processin
    corecore