413 research outputs found

    Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

    Get PDF
    Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femtocells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of smallcells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-onedge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-onedge configuration to establish a greener network over the other competitive configurations

    Architecture of a cognitive non-line-of-sight backhaul for 5G outdoor urban small cells

    Get PDF
    Densely deployed small cell networks will address the growing demand for broadband mobile connectivity, by increasing access network capacity and coverage. However, most potential small cell base station (SCBS) locations do not have existing telecommunication infrastructure. Providing backhaul connectivity to core networks is therefore a challenge. Millimeter wave (mmW) technologies operated at 30-90GHz are currently being considered to provide low-cost, flexible, high-capacity and reliable backhaul solutions using existing roof-mounted backhaul aggregation sites. Using intelligent mmW radio devices and massive multiple-input multiple-output (MIMO), for enabling point-to-multipoint (PtMP) operation, is considered in this research. The core aim of this research is to develop an architecture of an intelligent non-line-sight (NLOS) small cell backhaul (SCB) system based on mmW and massive MIMO technologies, and supporting intelligent algorithms to facilitate reliable NLOS street-to-rooftop NLOS SCB connectivity. In the proposed architecture, diffraction points are used as signal anchor points between backhaul radio devices. In the new architecture the integration of these technologies is considered. This involves the design of efficient artificial intelligence algorithms to enable backhaul radio devices to autonomously select suitable NLOS propagation paths, find an optimal number of links that meet the backhaul performance requirements and determine an optimal number of diffractions points capable of covering predetermined SCB locations. Throughout the thesis, a number of algorithms are developed and simulated using the MATLAB application. This thesis mainly investigates three key issues: First, a novel intelligent NLOS SCB architecture, termed the cognitive NLOS SCB (CNSCB) system is proposed to enable street-to-rooftop NLOS connectivity using predetermined diffraction points located on roof edges. Second, an algorithm to enable the autonomous creation of multiple-paths, evaluate the performance of each link and determine an optimal number of possible paths per backhaul link is developed. Third, an algorithm to determine the optimal number of diffraction points that can cover an identified SCBS location is also developed. Also, another investigated issue related to the operation of the proposed architecture is its energy efficiency, and its performance is compared to that of a point-to-point (PtP) architecture. The proposed solutions were examined using analytical models, simulations and experimental work to determine the strength of the street-to-rooftop backhaul links and their ability to meet current and future SCB requirements. The results obtained showed that reliable multiple NLOS links can be achieved using device intelligence to guide radio signals along the propagation path. Furthermore, the PtMP architecture is found to be more energy efficient than the PtP architecture. The proposed architecture and algorithms offer a novel backhaul solution for outdoor urban small cells. Finally, this research shows that traditional techniques of addressing the demand for connectivity, which consisted of improving or evolving existing solutions, may nolonger be applicable in emerging communication technologies. There is therefore need to consider new ways of solving the emerging challenges

    Analysis of power line communications for last-hop backhaul in small cells deployment

    Get PDF
    Publicado en: :(2019-04-05),(José A. Cortes, Francisco J. Cañete, Matías Toril, Luis Díez, Alicia García-Mozos, "Analysis of power line communications for last-hop backhaul in small cells deployment", in Proceedings of the IEEE International Symposium on Power Line Communications and its Applications, 2019.),yEditor(IEEE)The purpose of this work is to study the feasibility of using power line communications (PLC) over outdoor public lighting networks (OPLN) for last-hop backhaul in small cell deployment. The analysis is based on actual noise measurements performed in two OPLN in the city of Málaga (Spain) and on a bottom-up channel simulator, which has been designed according to the physical characteristics and the common practices in such kind of networks. Estimations of the bit-rate achieved by PLC systems following the ITU-T Rec. G.9960 (G.hn) standard, are performed and discussed. Results indicate that PLC is a promising solution for this application.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    On Integrated Access and Backhaul Networks: Current Status and Potentials

    Get PDF
    In this paper, we introduce and study the potentials and challenges of integrated access and backhaul (IAB) as one of the promising techniques for evolving 5G networks. We study IAB networks from different perspectives. We summarize the recent Rel-16 as well as the upcoming Rel-17 3GPP discussions on IAB, and highlight the main IAB-specific agreements on different protocol layers. Also, concentrating on millimeter wave-based communications, we evaluate the performance of IAB networks in both dense and suburban areas. Using a finite stochastic geometry model, with random distributions of IAB nodes as well as user equipments (UEs) in a finite region, we study the service coverage rate defined as the probability of the event that the UEs' minimum rate requirements are satisfied. We present comparisons between IAB and hybrid IAB/fiber-backhauled networks where a part or all of the small base stations are fiber-connected. Finally, we study the robustness of IAB networks to weather and various deployment conditions and verify their effects, such as blockage, tree foliage, rain as well as antenna height/gain on the coverage rate of IAB setups, as the key differences between the fiber-connected and IAB networks. As we show, IAB is an attractive approach to enable the network densification required by 5G and beyond.Comment: Revised manuscript in IEEE Open Journal of the Communications Societ

    Environment-Aware Minimum-Cost Wireless Backhaul Network Planning with Full-Duplex Links

    Full text link
    In this work, we address the joint design of the wireless backhauling network topology as well as the frequency/power allocation on the wireless links, where nodes are capable of full-duplex (FD) operation. The proposed joint design enables the coexistence of multiple wireless links at the same channel, resulting in an enhanced spectral efficiency. Moreover, it enables the usage of FD capability when/where it is gainful. In this regard, a mixed-integer-linear-program (MILP) is proposed, aiming at a minimum cost design for the wireless backhaul network, considering the required rate demand at each base station. Moreover, a re-tunning algorithm is proposed which reacts to the slight changes in the network condition, e.g., channel attenuation or rate demand, by adjusting the transmit power at the wireless links. In this regard, a successive inner approximation (SIA)- based design is proposed, where in each step a convex subproblem is solved. Numerical simulations show a reduction in the overall network cost via the utilization of the proposed designs, thanks to the coexistence of multiple wireless links on the same channel due to the FD capability.Comment: Submuitted to IEEE for publicatio
    • …
    corecore