1,970 research outputs found

    An approach towards iris localization for non cooperative images: A study

    Get PDF
    Iris localization is the most important part of iris recognition which involves the detection of iris boundaries in an image. A very important need of this effective security system is to overcome the rigid constraints necessitated by the practical implementation of such a system. There are a few existing techniques for iris segmentation in which iris detection using Circular Hough Transform is the most reliable and popular and it has been implemented in this project. But there is a shortcoming in this technique. It does not perform well and does not gives high accuracy with images containing noise or occlusions caused by eyelids. Such kind of images constitute non cooperative data for iris recognition. To provide acceptable measures of accuracy, it is critical for an iris recognition system to overcome various noise effects introduced in images captured under different environment such as occlusions due to eyelids. This report discusses an approach towards less constraint iris recognition using occluded images. The Circular Hough Transform is implemented for few images and a novel approach towards iris localization and eyelids detection is studied.

    Accurate Detection of Non-Iris Occlusions

    Get PDF
    Abstract-Accurate detection of iris eyelids and reflections is the prerequisite for the accurate iris recognition, both in near-infrared or visible spectrum measurements. Undected iris occlusions otherwise dramatically decrease the iris recognition rate. This paper presents a fast multispectral iris occlusions detection method based on the underlying multispectral spatial probabilistic iris textural model and adaptive thresholding. The model adaptively learns its parameters on the iris texture part and subsequently checks for iris reflections, eyelashes, and eyelids using the recursive prediction analysis. Our method obtains better accuracy with respect to the previously performed Noisy Iris Challenge Evaluation contest. It ranked first from the 97+2 alternative methods on this large colour iris database

    Accurate Iris Localization Using Edge Map Generation and Adaptive Circular Hough Transform for Less Constrained Iris Images

    Get PDF
    This paper proposes an accurate iris localization algorithm for the iris images acquired under near infrared (NIR) illuminations and having noise due to eyelids, eyelashes, lighting reflections, non-uniform illumination, eyeglasses and eyebrow hair etc. The two main contributions in the paper are an edge map generation technique for pupil boundary detection and an adaptive circular Hough transform (CHT) algorithm for limbic boundary detection, which not only make the iris localization more accurate but faster also. The edge map for pupil boundary detection is generated on intersection (logical AND) of two binary edge maps obtained using thresholding, morphological operations and Sobel edge detection, which results in minimal false edges caused by the noise. The adaptive CHT algorithm for limbic boundary detection searches for a set of two arcs in an image instead of a full circle that counters iris-occlusions by the eyelids and eyelashes. The proposed CHT and adaptive CHT implementations for pupil and limbic boundary detection respectively use a two-dimensional accumulator array that reduces memory requirements. The proposed algorithm gives the accuracies of 99.7% and 99.38% for the challenging CASIA-Iris-Thousand (version 4.0) and CASIA-Iris-Lamp (version 3.0) databases respectively. The average time cost per image is 905 msec. The proposed algorithm is compared with the previous work and shows better results

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future
    corecore