7 research outputs found

    Non-Invasive Brain-Actuated Interaction

    Get PDF
    The promise of Brain-Computer Interfaces (BCI) technology is to augment human capabilities by enabling interaction with computers through a conscious and spontaneous modulation of the brainwaves after a short training period. Indeed, by analyzing brain electrical activity online, several groups have designed brain-actuated devices that provide alternative channels for communication, entertainment and control. Thus, a person can write messages using a virtual keyboard on a computer screen and also browse the internet. Alternatively, subjects can operate simple computer games, or brain games, and interact with educational software. Work with humans has shown that it is possible for them to move a cursor and even to drive a wheelchair. This paper briefly reviews the field of BCI, with a focus on non-invasive systems based on electroencephalogram (EEG) signals. It also describes three brain-actuated devices we have developed: a virtual keyboard, a brain game, and a wheelchair. Finally, it shortly discusses current research directions we are pursuing in order to improve the performance and robustness of our BCI system, especially for real-time control of brain-actuated robots

    The Application of Neurologically-Controlled Robotics to Actuated Feeding Arms

    Get PDF
    The medical industry is constantly performing research and trying to combat various diseases that afflict humans. Despite advancements in technology, there still remain diseases that have no cure but seem prime candidates for neurologically controlled robots. One such category of diseases consists of various muscular dystrophic diseases. Diseases such as ALS and Parkinson’s have limited options regarding treatment, but by brain controlled interfaces (BCI’s), robotics can help mitigate the impact on a patient’s quality of life. By utilizing a functioning mind, an electroencephalographic (EEG) helmet can be used to control various exoskeletal systems and even prosthesis in order to compensate for a damaged motor system. Through the use of neurologically controlled robotics, a user’s motor control and motor strength can be rehabilitated and maintained despite the effects of muscular dystrophic diseases. The goal of this project is to use this experiment to demonstrate the current effectiveness of brain actuated robotics and telepresence that utilize an EEG Sensor. From this assessment, recommendations and further improvements can be made to this existing technology for it to be better suited for electrical engineering and biomedical applications, while simultaneously taking the technology into a new realm of application

    Non-Invasive Brain-Machine Interaction

    Get PDF
    The promise of Brain-Computer Interfaces (BCI) technology is to augment human capabilities by enabling interaction with computers through a conscious and spontaneous modulation of the brainwaves after a short training period. Indeed, by analyzing brain electrical activity online, several groups have designed brain-actuated devices that provide alternative channels for communication, entertainment and control. Thus, a person can write messages using a virtual keyboard on a computer screen and also browse the internet. Alternatively, subjects can operate simple computer games, or brain games, and interact with educational software. Work with humans has shown that it is possible for them to move a cursor and even to drive a wheelchair. This paper briefly reviews the field of BCI, with a focus on non-invasive systems based on electroencephalogram (EEG) signals. It also describes three brain-actuated devices we have developed: a virtual keyboard, a brain game, and a wheelchair. Finally, it shortly discusses current research directions we are pursuing in order to improve the performance and robustness of our BCI system, especially for real-time control of brain actuated robots

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy
    corecore