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Abstract  
The medical industry is constantly performing research and trying to combat various diseases that afflict 
humans. Despite advancements in technology, there still remain diseases that have no cure but seem prime 
candidates for neurologically controlled robots. One such category of diseases consists of various muscular 
dystrophic diseases. Diseases such as ALS and Parkinson’s have limited options regarding treatment, but 
by brain controlled interfaces (BCI’s), robotics can help mitigate the impact on a patient’s quality of life. 
By utilizing a functioning mind, an electroencephalographic (EEG) helmet can be used to control various 
exoskeletal systems and even prosthesis in order to compensate for a damaged motor system. Through the 
use of neurologically controlled robotics, a user’s motor control and motor strength can be rehabilitated and 
maintained despite the effects of muscular dystrophic diseases. The goal of this project is to use this 
experiment to demonstrate the current effectiveness of brain actuated robotics and telepresence that utilize 
an EEG Sensor. From this assessment, recommendations and further improvements can be made to this 
existing technology for it to be better suited for electrical engineering and biomedical applications, while 
simultaneously taking the technology into a new realm of application. 
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Introduction 

     For this experiment, the initial goal was to use electroencephalographic (EEG) sensor 

technology in a new realm of application. At its roots, EEG technology utilizes brain 

wave outputs as inputs in a computer interface to actuate mechanical systems [8]. The 

three main waves utilized in this fashion are alpha, beta, and gamma waves of the brain 

[14]. From this research project, advances in the utility and ease of implementation of 

EEG technology were desired. Multiple approaches and methodologies were considered 

when utilizing electroencephalographically obtained data. With EEG technology not 

being commonplace in everyday applications, any technical insight would prove 

beneficial to the industry. 

      

Literature Review 

     Throughout any undertaking of experimentation in the realm of 

electroencephalographic technology, it was important to consider the numerous aspects 

of the technology, both positive and negative. The largest benefit of EEG technology is 

that a successful setup can compensate for impaired portions and even entire systems of 

the body. So long as the mind is fully functioning, EEG sensors can be used to bridge the 

gap in physical functionality of a user. The complexity of this application is limited 

solely by the type of sensor involved and a user’s ability to control either mental states or 

amplitude of brainwaves, depending on precisely how the EEG technology is 

implemented. Once perfected, EEG sensors can seamlessly pass commands to a 

mechanical system, matching a user’s thought input. The other large benefit of 
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electroencephalographic technology is that each user can also have a customized profile 

that can be adjusted to create a better fit. 

     Naturally, when using EEG technology with direct input from the human brain, one of 

the constraining factors is the brain itself. The human brain is not capable of multitasking 

and can only actively focus on one task at a time [11]. To compensate for this, the brain 

actively switches from one task to another numerous times a second. The result from this 

can be problematic when utilizing data, as this causes all types of brainwaves to undergo 

rapid changes on the millisecond scale. Suffice to say, such rapid spikes in brain activity 

often have ramifications, the most dire of which being a large amount of interference and 

noise data recordings. To counteract this, most applications of EEG technology should 

utilize some sort of filter or rejection criteria [7].  Filters and rejection criteria actively 

limit the number of erroneous inputs provided to an EEG device with the brain. These 

analytical tools mend some of the shortcomings of EEG technology. Additionally, these 

tools allow EEG sensors an amount of pliability to be attached to each user, enhancing 

and providing a customized experience and reading. 

     While EEG sensors possess a great amount of utility, there are some drawbacks 

associated with the technology that should be taken into account. First and foremost, the 

largest limitation of the technology was tied to the number of nodes attached to the 

sensor. The Mindwave headset utilizes two nodes: one that is used to sense and register 

brainwaves, one to act as a ground. The active node attaches to the forehead while the 
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ground node connects to the user’s ear lobe (Figure 1). 

 

As with any analytical approach, the more sources of information that are available, the 

more conviction can be placed upon the results. As stated, the Neurosky Mindwave 

possesses only the two nodes. Depending on the depth of study, additional nodes may be 

required for improved precision and accuracy of readings. Different authors’ approach to 

the number of nodes can be found in the Literature Review section. Not only does the 

number of nodes affect the quality of readings, but a lack of sufficient nodes can severely 

limit the technical approaches that can be taken to utilizing EEG technology. There are 

two main ways to implement EEG technology. One possible approach is to create 

commands according to which regions of the brain are activated by specific thought 

processes [7]. These commands can be established by associating certain mental states 

with desired inputs to a system based on the type of cognitive thinking required to 
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activate each mental state. Such states are created via a statistical classifier and would 

need to be customized for each user and calibrated before each trial [8]. An example of 

this is controlling a robotic car through a maze and other directed control applications [7]. 

Another potential method is to hard code commands that rely on the relative strengths of 

brainwaves, which was the approach utilized by this work. The benefit of this approach is 

that it does not require a piece of software to associate different mental states with 

command inputs. This approach is still rather unique, as most applications tend to favor 

the idea of associating mental states [Millán, 14]. This style of approach is also limited by 

the number of different brainwaves and their relative magnitudes in association with one 

another. Mental states is instead limited by the number of regions that can be 

independently activated by a user’s mental activity. When deciding between these two 

approaches, it is important to weigh these limitations. 

     Based on extensive background research, the largest caveat to this project was the 

general belief that everyday applications of EEG technology would be difficult due to the 

rapid thought processing of the brain, and the amount of noise generated during thought 

processes [12]. From Foerster’s study of brain computer interfaces, 8 sensory nodes were 

utilized in addition to a ground node and a reference node [2]. 

 

 

Methods 

     For this application, a Neurosky Mindwave EEG sensor was first used as a 

preliminary tool to record and interpret brain wavelengths. These wavelengths were then 

broadcasted to a computer via Bluetooth connectivity and visually monitored. This data 
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was collaborated into Brainwave Visualizer, a software developed by Neurosky that 

specialized in visual management of brainwave data. From the sensor input, the 

Brainwave Visualizer software was able to show the relative magnitude of the various 

brain wavelengths. This software was able to demonstrate the following brain 

wavelengths: High Alpha, Low Alpha, High Beta, Low Beta, High Gamma, Low 

Gamma, Delta, and Theta. These wavelengths were all measured through an electrode 

placed on the forehead of the user (Figure 2). These initial readings of wavelengths were 

then imported into a Microsoft Excel file for preliminary data analysis (Figure 2).  

 

 

Figure 2: Preliminary Sensor Data 

 

 



8 
 

Of all the data collected, alpha, beta, and gamma waves were considered as they are the 

result of more easily replicative brain processes. For example, alpha waves are associated 

with wakeful rest and could dominate the input to the computer simply by having the user 

close their eyes and imagine a relaxing scene [5,12]. Beta waves are more closely 

associated with concentration, so any task that actively required focused attention or 

brainpower could cause beta waves to be the dominant signal to the sensor [14]. Gamma 

waves are commonly associated with mental states related to prayer, meditation, and 

other methods of deep contemplation. These waves can be seen visually in Figure 2. The 

relative magnitude of each wave can also be seen on the y axis of the graph.  

     This initial testing method, although beneficial for being able to take multiple sets of 

data very rapidly, was far from ideal. The goal of this experiment was to demonstrate 

using EEG data as potential inputs for a mechanical system, so the fact that each 

wavelength varied intensely was problematic from the perspective of obtaining usable 

data in order to establish a proof of concept. To further improve upon the data quality and 

utility, a method that could automatically apply a moving average filter to the data. A 

moving average filter is useful because it takes the average value of all samples within a 

specified interval range [4].  This average value reduces variance in the data and would 

be a more proper representation of the data set as a whole. The equation for a moving 

average can be seen below: 

 

 (Equation 1) 
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Where n is the number of terms within a given interval, xM is the value of the given 

wavelength. This equation allows for the calculation of a new sum at every point, 

dropping the oldest term in exchange for the newest one and calculating the new sum 

each time. 

     During experimentation, an Arduino Uno was used in order to automatically collect 

brainwave data. To complement the Arduino microcontroller, an RN-41 Bluetooth 

Module was integrated into the circuit to be able to pair with the Neurosky Mindwave 

(Figure 3).  

 

Figure 3: Arduino Circuit Controller Setup 

The function of the circuit is for the EEG sensor to pass data to the Bluetooth Module. 

The Bluetooth Module then incorporates the serial monitor from the Arduino software to 

display the amplitude of each type of brainwave. The Arduino is also passed the code to 

be able to apply a moving average filter to the data as it comes in (Appendix). 
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Results 

     Over the course of the project, a lot was discovered in the realm of initializing an 

electroencephalographic sensor into a new area of application. The largest and most 

impactful result of this experiment was the utility and suitability of the Neurosky 

Mindwave for a potentially commercial application. As stated previously, the number of 

electrodes plays a large role in the quality of data readings. It was found that the 

Neurosky Mindwave was not suitable for an Arduino based application. The Neurosky 

had numerous connectivity issues regarding both the RN-41 Bluetooth Module and the 

Arduino software interface. Despite the Bluetooth Module recognizing and connecting 

the Neurosky Mindwave EEG sensor and the Arduino successfully implementing code 

and recognizes the Bluetooth Module in its port, the Arduino does not successfully 

display output the data that should be recorded via the Mindwave. This was potentially a 

compatibility issue with the Neurosky Mindwave and the Arduino. This issue presented 

complications when it came to post data analysis. Due to troubles with the EEG sensor, 

the Arduino code associated with automatically recording all active brainwave 

measurements and applying a moving average filter to each brainwave was not able to be 

properly implemented. The brainwave readings that suffered from technical difficulties 

can be seen below (Figure 4). 
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Figure 4: Erroneous Serial Output of EEG Sensor via Arduino 

 

Discussion 

     This work serves as a prime example of the fundamental challenges of applying EEG 

technology to simple life tasks today. Despite how simple it may appear to attempt to 

establish a conceptual design that utilizes EEG sensors, the simple fact is that the 

technology may still not be ready for off the shelf commercial applications. As such, it is 

recommended that alternative approaches still be considered for EEG applications. 

Alternative methods may offer more troubleshooting capabilities and better availability of  

 
 
Conclusion 

     Despite the lack of results of this approach, this experiment served to provide many 

benefits to the electroencephalographic industry. For example, it was learned that 

strategies that utilize mental state were proven to be very successful as seen in Millán’s 

and Foersters experiments with brain computer interfaces [2,6-8]. Brain computer 
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interfaces (BCI’s) supplement the capabilities of EEG technologies by bringing 

additional processing power to the situation. Computers can be used to automatically 

create mental states based on specific types of thinking that activate different regions of 

the brain [5,6,8,10]. Such examples could include multiplication, mentally solving a 

Rubix cube, crushing a box, or relaxation. These mental states can then be associated 

with commands to be used as inputs into a mechanical system. Such brain computer 

interfaces can be more easily implemented as it takes part of the burden of operation off 

the user and utilizes additional software to create criteria for input commands. Going 

forward, it would be beneficial to incorporate a sensor with more electrodes to read and 

send signals to a brain computer interface. It would also be beneficial to utilize additional 

software capable of creating mental states and linking mental associations with desired 

mechanical outputs to mitigate the burden on potential users. Only when these obstacles 

presented are removed can electroencephalographic technology be applied to a robotic 

feeding arm to the point where any user can successfully utilize such technology to a high 

degree of accuracy. Once such a method is implemented can an approach begin to 

integrate EEG technology into a new realm of commercial application. 

  



13 
 

Works Cited 

[1] Escolano, C., Antelis, J. M., & Minguez, J. (2012). A telepresence mobile robot 

controlled with a noninvasive brain-computer interface. IEEE Transactions on Systems, 

Man, and Cybernetics, Part B: Cybernetics, 42(3), 793–804. 

https://doi.org/10.1109/TSMCB.2011.2177968 

[2] Foerster, M., Bonnet, S., Van Langhenhove, A., Porcherot, J., & Charvet, G. (2013). 

A synchronization method for wireless acquisition systems, application to brain computer 

interfaces. Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual 

International Conference of the IEEE, 830–833. 

[3] Kim, Y. S., Baek, H. J., Kim, J. S., Lee, H. B., Choi, J. M., & Park, K. S. (2009). 

Helmet-based physiological signal monitoring system. European Journal of Applied 

Physiology, 105(3), 365–372. https://doi.org/10.1007/s00421-008-0912-6 

[4] Mayur Agarwal, Ashutosh Mishra, Swapna Banerjee, "VLSI architecture for IEEE 

single precision floating point moving average calculator", Power and Advanced 

Computing Technologies (i-PACT) 2017 Innovations in, pp. 1-4, 2017. 

[5] Member, S., Antelis, J. M., Andrea, K., & Minguez, J. (2009). A Noninvasive Brain-

Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated 

Navigation, 25(3), 614–627. https://doi.org/10.1109/tro.2009.2020347 

[6] Millán, J. D. R., Ferrez, P. W., Galán, F., Lew, E., & Chavarriaga, R. (2007). Non-

invasive brain-actuated interaction. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

4729 LNCS, 438–447. https://doi.org/10.1007/978-3-540-75555-5_42 

https://doi.org/10.1007/s00421-008-0912-6


14 
 

[7] Millán, J. D. R., Renkens, F., Mouriño, J., & Gerstner, W. (2004). Noninvasive brain-

actuated control of a mobile robot by human EEG. IEEE Transactions on Biomedical 

Engineering, 51(6), 1026–1033. https://doi.org/10.1109/TBME.2004.827086 

[8] Millán, J. del R., Renkens, F., Mouriño, J., & Gerstner, W. (2004). Brain-actuated 

interaction. Artificial Intelligence, 159(1–2), 241–259. 

https://doi.org/10.1016/j.artint.2004.05.008 

[9] Oehler, M., Neumann, P., Becker, M., Curio, G., & Schilling, M. (2008). Extraction 

of SSVEP signals of a capacitive EEG helmet for human machine interface. Conference 

Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 

2008(factor 2), 4495–4498. https://doi.org/10.1109/IEMBS.2008.4650211 

[10] P, M. L. A., & Rob, M. G. (2013). Analysis and Classification of 

Electroencephalographic Signals (EEG) to Identify Arm Movements, 138–143. 

[11] Rosen, Christine. “The Myth of Multitasking.” The New Atlantis, no. 20, 2008,  

 pp. 105–110., www.jstor.org/stable/43152412. 

[12] Rosenberg, W. V. O. N., & Member, S. (2016). Smart Helmet : Wearable 

Multichannel ECG and EEG. IEEE Journal of Translational Engineering in Health and 

Medicine, 4(August). https://doi.org/10.1109/JTEHM.2016.2609927 

[13] Soleymani, M. (2013). Imperial College London , UK Imperial College London , 

UK University of Twente , the Netherlands, 231287(231287). 

[14] Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science 

Review, 2(2), 1–11. https://doi.org/10.1021/pr070350l 



15 
 

[14] Yosephine, V. (n.d.). LEGO Robotics Based Project for Industrial Engineering 

Education. The International Journal of Engineering Education. 

  



16 
 

 
Appendix 

Arduino Code: 

/* 

  Brain wave interface  

  Connections: 

  Bluetooth silver mate to Uno: Rx --> Tx 

                                Tx --> Rx 

  Once configured, Neurosky mindwave connects to the bluetooth module automatically. 

https://learn.sparkfun.com/tutorials/hackers-in-residence---hacking-mindwave-

mobile?_ga=1.192828522.1192467422.1459118391 

  Software serial is used to push the data serially. 

  ------------------------------------------------------------------------------- 

  This example code is in the public domain. 

  modified 7 Dec 2017 

  by Manoj Sharma 

  imanoj_sharma@yahoo.com 

  https://twitter.com/irahulone 

  ------------------------------------------------------------------------------- 

  

*/ 

 
 

//////////////////////////////////////////////////////////////////////// 
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#include <SoftwareSerial.h>     // library for software serial 

SoftwareSerial mySerial(5, 6);  // RX, TX 

int LED = 13; // onboard led connected to pin #13 

int BAUDRATE = 57600; 

// checksum variables 

byte payloadChecksum = 0; 

byte CalculatedChecksum; 

byte checksum = 0;              //data type byte stores an 8-bit unsigned number, from 0 to 

255 

int payloadLength = 0; 

byte payloadData[64] = {0}; 

byte poorQuality = 0; 

int attention = 0; 

int meditation = 0; 

// system variables 

long lastReceivedPacket = 0; 

boolean bigPacket = false; 

boolean brainwave = false; 

int attTh = 60;   // Set the threshold b/w 0 & 100 

void setup() 

{ 

  pinMode(LED, OUTPUT); 

  digitalWrite(LED, HIGH);   // hello sequence 



18 
 

  //delay(100); 

  digitalWrite(LED, LOW); 

  //delay(100); 

  Serial.begin(57600);       // Bluetooth 

  delay(500); 

  mySerial.begin(57600);      // software serial 

  delay(500); 

  mySerial.print("Communicating... "); 

  mySerial.println(); 

} 

byte ReadOneByte() 

{ 

   int ByteRead; 

  // Wait until there is data 

  while(!Serial.available()); //mySerial.println(millis()); 

  //Get the number of bytes (characters) available for reading from the serial port. 

  //This is data that's already arrived and stored in the serial receive buffer (which holds 

64 bytes) 

  ByteRead = Serial.read(); //mySerial.println(ByteRead); 

  return ByteRead; // read incoming serial data 

  Serial.flush(); 

  } 

unsigned int delta_wave = 0; 
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unsigned int theta_wave = 0; 

unsigned int low_alpha_wave = 0; 

unsigned int high_alpha_wave = 0; 

unsigned int low_beta_wave = 0; 

unsigned int high_beta_wave = 0; 

unsigned int low_gamma_wave = 0; 

unsigned int mid_gamma_wave = 0; 

void read_waves(int i) { 

  delta_wave = read_3byte_int(i); 

  i+=3; 

  theta_wave = read_3byte_int(i); 

  i+=3; 

  low_alpha_wave = read_3byte_int(i); 

  i+=3; 

  high_alpha_wave = read_3byte_int(i); 

  i+=3; 

  low_beta_wave = read_3byte_int(i); 

  i+=3; 

  high_beta_wave = read_3byte_int(i); 

  i+=3; 

  low_gamma_wave = read_3byte_int(i); 

  i+=3; 

  mid_gamma_wave = read_3byte_int(i); 
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} 

int read_3byte_int(int i) { 

  return ((payloadData[i] << 16) + (payloadData[i+1] << 8) + payloadData[i+2]); 

} 

void(* resetFunc) (void) = 0; 

void loop() 

{ 

  // Look for sync bytes 

  // Byte order: 0xAA, 0xAA, payloadLength, payloadData, 

  // Checksum (sum all the bytes of payload, take lowest 8 bits, then bit inverse on lowest 

if(ReadOneByte() == 0xAA) { 

if(ReadOneByte() == 0xAA) { 

payloadLength = ReadOneByte(); 

if(payloadLength > 169) //Payload length can not be greater than 169 

return; 

payloadChecksum = 0; 

      for(int i = 0; i < payloadLength; i++) {      //loop until payload length is complete 

        payloadData[i] = ReadOneByte();             //Read payload 

        payloadChecksum += payloadData[i]; 

      } 

      checksum = ReadOneByte();                     //Read checksum byte from stream 

      payloadChecksum = 255 - payloadChecksum;      //Take one’s compliment of 

generated checksum 
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      if(checksum == payloadChecksum) { 

        poorQuality = 200; 

        //attention = 0; 

        //meditation = 0; 

 } 

     brainwave = false; 

     for(int i = 0; i < payloadLength; i++) { // Parse the payload 

          switch (payloadData[i]) { 

          case 02: 

            i++; 

            poorQuality = payloadData[i]; 

            bigPacket = true; 

            break; 

          case 04: 

            i++; 

            attention = payloadData[i]; 

            break; 

          case 05: 

            i++; 

            meditation = payloadData[i]; 

            break; 

          case 0x80: 

            i = i + 3; 
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            break; 

          case 0x83:                         // ASIC EEG POWER INT 

            i++; 

            brainwave = true; 

            byte vlen = payloadData[i]; 

            //mySerial.print(vlen, DEC); 

            //mySerial.println(); 

            read_waves(i+1); 

            i += vlen; // i = i + vlen 

            break; 

          }                                 // switch 

        }                                   // for loop 

        if(bigPacket) { 

          if(poorQuality == 0){ 

          } 

          else{                             // do nothing 

           } 

         } 

            if(brainwave && attention > 0 && attention < 100) 

            {             

              // Here the values are sent ove the software serial 

              mySerial.print(attention); mySerial.print(", "); 

              mySerial.print(meditation); mySerial.print(", "); 
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              mySerial.println(); 

         }          

        } 

        } 

//////////////////////////////////////////////////// 

        if(attention >= attTh) 

        { 

            digitalWrite(LED, 1); 

        } 

        else 

            digitalWrite(LED, LOW); 

        //digitalWrite(LED, 0); delay(100); 

        //digitalWrite(LED, 1); delay(100); 

//////////////////////////////////////////////////// 

} 

 

 Moving Average Filter. 

  Example to implement a real time moving average filter, using a potentiometer 

  as an input to the system.   

  Connections: 

  Connect the output of a potentiometer to pin A0.  

  ------------------------------------------------------------------------------- 

  This example code is in the public domain. 

  modified 9 Feb 2018 
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  by Manoj Sharma 

  imanoj_sharma@yahoo.com 

  @irahulone 

  ------------------------------------------------------------------------------- 

*/ 

const int window_size = 100;  // define the window size. 

const int refPosPin = A0;     // input pin 

int refPosAr[window_size]; 

float ref = 0; 

void setup() 

{ 

  Serial.begin(9600); 

} 

void loop() 

{ 

  int p = sizeof(refPosAr)/sizeof(int);  // window size 

  refPosAr[p] = analogRead(refPosPin); 

  float a = 0; 

  for(int i = 1; i <= p; i++) 

  { 

    a += refPosAr[i]; 

  } 

  a = a/p; 
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  ref = a; 

  for(int i = 2; i <= p; i++) 

  { 

    refPosAr[i-1] = refPosAr[i]; 

  } 

  Serial.println(ref); 

} 
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