431 research outputs found

    Differentially private data publishing for data analysis

    Get PDF
    In the information age, vast amounts of sensitive personal information are collected by companies, institutions and governments. A key technological challenge is how to design mechanisms for effectively extracting knowledge from data while preserving the privacy of the individuals involved. In this dissertation, we address this challenge from the perspective of differentially private data publishing. Firstly, we propose PrivPfC, a differentially private method for releasing data for classification. The key idea underlying PrivPfC is to privately select, in a single step, a grid, which partitions the data domain into a number of cells. This selection is done using the exponential mechanism with a novel quality function, which maximizes the expected number of correctly classified records by a histogram classifier. PrivPfC supports both the binary classification as well as the multiclass classification. Secondly, we study the problem of differentially private k-means clustering. We develop techniques to analyze the empirical error behaviors of the existing interactive and non-interactive approaches. Based on the analysis, we propose an improvement of the DPLloyd algorithm which is a differentially private version of the Lloyd algorithm and propose a non-interactive approach EUGkM which publishes a differentially private synopsis for k-means clustering. We also propose a hybrid approach that combines the advantages of the improved version of DPLloyd and EUGkM. Finally, we investigate the sparse vector technique (SVT) which is a fundamental technique for satisfying differential privacy in answering a sequence of queries. We propose a new version of SVT that provides better utility by introducing an effective technique to improve the performance of SVT in the interactive setting. We also show that in the non-interactive setting (but not the interactive setting), usage of SVT can be replaced by the exponential mechanism

    Accurate and Efficient Private Release of Datacubes and Contingency Tables

    Full text link
    A central problem in releasing aggregate information about sensitive data is to do so accurately while providing a privacy guarantee on the output. Recent work focuses on the class of linear queries, which include basic counting queries, data cubes, and contingency tables. The goal is to maximize the utility of their output, while giving a rigorous privacy guarantee. Most results follow a common template: pick a "strategy" set of linear queries to apply to the data, then use the noisy answers to these queries to reconstruct the queries of interest. This entails either picking a strategy set that is hoped to be good for the queries, or performing a costly search over the space of all possible strategies. In this paper, we propose a new approach that balances accuracy and efficiency: we show how to improve the accuracy of a given query set by answering some strategy queries more accurately than others. This leads to an efficient optimal noise allocation for many popular strategies, including wavelets, hierarchies, Fourier coefficients and more. For the important case of marginal queries we show that this strictly improves on previous methods, both analytically and empirically. Our results also extend to ensuring that the returned query answers are consistent with an (unknown) data set at minimal extra cost in terms of time and noise

    A learning theory approach to non-interactive database privacy

    Get PDF
    We demonstrate that, ignoring computational constraints, it is possible to release privacy-preserving databases that are useful for all queries over a discretized domain from any given concept class with polynomial VC-dimension. We show a new lower bound for releasing databases that are useful for halfspace queries over a continuous domain. Despite this, we give a privacy-preserving polynomial time algorithm that releases information useful for all halfspace queries, for a slightly relaxed definition of usefulness. Inspired by learning theory, we introduce a new notion of data privacy, which we call distributional privacy, and show that it is strictly stronger than the prevailing privacy notion, differential privacy

    Boosting the Accuracy of Differentially-Private Histograms Through Consistency

    Full text link
    We show that it is possible to significantly improve the accuracy of a general class of histogram queries while satisfying differential privacy. Our approach carefully chooses a set of queries to evaluate, and then exploits consistency constraints that should hold over the noisy output. In a post-processing phase, we compute the consistent input most likely to have produced the noisy output. The final output is differentially-private and consistent, but in addition, it is often much more accurate. We show, both theoretically and experimentally, that these techniques can be used for estimating the degree sequence of a graph very precisely, and for computing a histogram that can support arbitrary range queries accurately.Comment: 15 pages, 7 figures, minor revisions to previous versio

    An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices

    Get PDF
    Statistical agencies face a dual mandate to publish accurate statistics while protecting respondent privacy. Increasing privacy protection requires decreased accuracy. Recognizing this as a resource allocation problem, we propose an economic solution: operate where the marginal cost of increasing privacy equals the marginal benefit. Our model of production, from computer science, assumes data are published using an efficient differentially private algorithm. Optimal choice weighs the demand for accurate statistics against the demand for privacy. Examples from U.S. statistical programs show how our framework can guide decision-making. Further progress requires a better understanding of willingness-to-pay for privacy and statistical accuracy

    PEPSI: Practically Efficient Private Set Intersection in the Unbalanced Setting

    Full text link
    Two parties with private data sets can find shared elements using a Private Set Intersection (PSI) protocol without revealing any information beyond the intersection. Circuit PSI protocols privately compute an arbitrary function of the intersection - such as its cardinality, and are often employed in an unbalanced setting where one party has more data than the other. Existing protocols are either computationally inefficient or require extensive server-client communication on the order of the larger set. We introduce Practically Efficient PSI or PEPSI, a non-interactive solution where only the client sends its encrypted data. PEPSI can process an intersection of 1024 client items with a million server items in under a second, using less than 5 MB of communication. Our work is over 4 orders of magnitude faster than an existing non-interactive circuit PSI protocol and requires only 10% of the communication. It is also up to 20 times faster than the work of Ion et al., which computes a limited set of functions and has communication costs proportional to the larger set. Our work is the first to demonstrate that non-interactive circuit PSI can be practically applied in an unbalanced setting
    • …
    corecore