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Abstract

In this paper we demonstrate that, ignoring computationaktraints, it is possible to privately
release synthetic databases that are useful for largeeslagsqueries — much larger in size than the
database itself. Specifically, we give a mechanism thagpely releases synthetic data for a class of
queries over a discrete domain with error that grows as atifumof the size of the smallest net ap-
proximately representing the answers to that class of gsiekive show that this in particular implies a
mechanism for counting queries that gives error guaramteg¢grow only with the VC-dimension of the
class of queries, which itself grows only logarithmicallitmthe size of the query class.

We also show that it is not possible to privately release enmple classes of queries (such as in-
tervals and their generalizations) over continuous domaiespite this, we give a privacy-preserving
polynomial time algorithm that releases information usédu all halfspace queries, given a slight re-
laxation of the utility guarantee. This algorithm does redease synthetic data, but instead another data
structure capable of representing an answer for each gquWégyalso give an efficient algorithm for re-
leasing synthetic data for the class of interval queriesaigtaligned rectangles of constant dimension.

Finally, inspired by learning theory, we introduce a newiowf data privacy, which we catlis-
tributional privacy, and show that it is strictly stronger than the prevailiniygey notion, differential
privacy.

1 Introduction

As large-scale collection of personal information becoseesier, the problem of database privacy is increas-
ingly important. In many cases, we might hope to learn usafatmation from sensitive data (for example,
we might learn a correlation between smoking and lung cainoer a collection of medical records). How-
ever, for legal, financial, or moral reasons, administsatdisensitive datasets might not want to release their
data. If those with the expertise to learn from large dasaast not the same as those who administer the
datasets, what is to be done? In order to study this problewrétically, it is important to quantify what
exactly we mean by “privacy.”

A series of recent paperis [DN04, BDMN05, DMN$06] formalities notion ofdifferential privacy A
database privatization mechanism (which may be eitherdati®e or non-interactive) satisfies differential
privacy if the addition or removal of a single database elgnuimes not change the probability of any
outcome of the privatization mechanism by more than somdl smmunt. The definition is intended to
capture the notion that “distributional information is poivate”—we may reveal that smoking correlates to
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lung cancer, but not that any individual has lung cancerviddals may submit their personal information
to the database secure in the knowledge that (almost) mptiim be discovered from the database with their
information that could not have been discovered without inéormation.

In this paper, motivated by learning theory, we propose tihdysof privacy-preserving mechanisms that
are useful for all queries in a particular class (such asaajunction queries or all halfspace queries). In
particular, we focus on counting queries of the form, “whiatfion of the database entries satisfy predicate
©?” and say that a sanitized output is useful for a claskthe answers to all queries ifi have changed by
at most somet-a.

Building on the techniques of Kasiviswanathan et|al. [KL08], we show that for discretized domains,
for any concept class that admits amet.\,,, it is possible to privately release synthetic data thasefui
for the class, with error that grows proportionally to tbgarithmof the size of\/,,. As a consequence, we
show that it is possible to release data useful for a set aftoogiqueries with error that grows proportionally
to the VC-dimension of the class of queries. The algorithmoisin general computationally efficient. We
are able to give a different algorithm that efficiently relesa synthetic data for the class of interval queries
(and more generally, axis-aligned rectangles in fixed dsiwar) that achieves guarantees in a similar range
of parameters.

Unfortunately, we show that for non-discretized domaingjar the above definition of usefulness, it
is impossible to publish a differentially private datab#sat is useful for even quite simple classes such as
interval queries. We next show how, under a natural relarati the usefulness criterion, one can release
information that can be used to usefully answer (arbiraniny) halfspace queries while satisfying pri-
vacy. In particular, instead of requiring that useful metbians answer each query approximately correctly,
we allow our algorithm to produce an answer that is approtéigecorrectfor some nearby queryThis
relaxation is motivated by the notion of large-margin sefmas in learning theory [AB99, VapB8, SS$02]; in
particular, queries with no data points close to the sejpaydityperplane must be answered accurately, and
the allowable error more generally is a function of the fimtbf points close to the hyperplane.

We also introduce a new concegitstributional privacy which makes explicit the notion that when run
on a database drawn from a distribution, privacy-presgrvirechanisms should reveal only information
about the underlying distribution, and nothing else. GiaatistributionD over database points, a database
privatization mechanism satisfies distributional privafcwith high probability, drawing an entirely new
database fronD does not change the probability of any outcome of the peatitn mechanism by more
than some small amount. We show that distributional privaeystrictly stronger guarantee than differential
privacy by showing that any mechanism that satisfies digtdbal privacy also satisfies differential privacy,
but that there are some functions that can be answered &gundnile satisfying differential privacy, and
yet reveal information about the particular database datjh not about any particular database element)
that is not “distributional.”

1.1 Prior and Subsequent Work
1.1.1 Prior Work

Recent work on theoretical guarantees for data privacy mitiated by [DNO3]. The notion of differential
privacy, finally formalized by[[DMNSO06], separates issuépivacy from issues of outside information
by defining privacy as indistinguishability of neighboridgtabases. This captures the notion that (nearly)
anything that can be learned if your data is included in thaltese can also be learned without your data.
This notion of privacy ensures that users have very litteimive to withhold their information from the
database. The connection between data privacy and ineesdiwmpatibility was formalized by McSherry

and Talwar[[MTOY].



Much of the initial work focused otower bounds Dinur and Nissim[[DNOB] showed that any mecha-
nism that answers substantially more than a linear numbsulaset-sungqueries with errop(1/+/n) yields
what they callelatant non-privacy- i.e. it allows an adversary to reconstruct all bui(&) fraction of
the original database. Dwork et al. [DMTO07] extend this hesuthe case in which the private mecha-
nism can answer a constant fraction of queries with arlyitearor, and show that still if the error on the
remaining queries is(1/+/n), the result is blatant non-privacy. Dwork and Yekhanin [[BY @ive further
improvements. These results easily extend to the case afingujueries which we consider here.

Dwork et al. [DMNSOQ0#6], in the paper that defined differengiaivacy, show that releasing the answers
to k low sensitivityqueries with noise drawn independently from the Laplac&iligion with scalek /e
preserveg-differential privacy. Unfortunately, the noise scaleghrly in the number of queries answered,
and so this mechanism can only answer a sub-linear numbereofeg with non-trivial accuracy. Blum et
al. BDMNO35] consider a model of learning and show that cgiatasses that are learnable in the statisti-
cal query (SQ) model are also learnable from a polynomialgdsdataset accessed through an interactive
differential-privacy-preserving mechanism. We note gwth mechanisms still access the database by ask-
ing counting-queries perturbed with independent noismftioe Laplace distribution, and so can still only
make a sublinear number of queries. In this paper, we givechamesm for privately answering counting
gueries with noise that grows only logarithmically with tiember of queries asked (or more generally with
the VC-dimension of the query class). This improvemeniadlan analyst to answer an exponentially large
number of queries with non-trivial error, rather than ornhehlrly many.

Most similar to this paper is the work of KasiviswanathanlgfleLN T08]. Kasiviswanathan et al. study
what can be learned privately when what is desired is thalhyipethesis output by the learning algorithm
satisfies differential privacy. They show that in a PAC léagmmodel in which the learner has access to the
private database, ignoring computational constraintgthamg that is PAC learnable is also privately PAC
learnable. We build upon the technique in their paper to sthatvin fact, it is possible to privately release
a dataset that is simultaneously useful for any function colcept class of polynomial VC-dimension.
Kasiviswanathan et al. also study several restrictiongaming algorithms, show separation between these
learning models, and give efficient algorithms for learnp@gticular concept classes.

1.1.2 Subsequent Work

Since the original publication of this paper in STOC 2008 F&IE] there has been a substantial amount of
follow up work. A sequence of papers by Dwork et al. [DNGB,[DRV10] give a non-interactive mechanism
for releasing counting queries with accuracy that dependssimilar way to the mechanism presented in
this paper on the total number of queries asked, but has erliEpendence on the database size. This
comes at the expense of relaxing the notios-dffferential privacy to an approximate version calleds)-
differential privacy. The mechanism df [DRVI10] also extertd arbitrary low-sensitivity queries rather
than only counting queries. This extension makes crucialaighe relaxation tde, 6)-privacy, as results
such as those given in this paper cannot be extended toaaybitbw-sensitivity queries while satisfying
e-differential privacy as shown recently by De [Dé11].

Roth and Roughgardeh [RR10] showed that bounds similardsetlachieved in this paper can also
be achieved in theteractivesetting, in which queries are allowed to arrive online andinine answered
before the next query is known. In many applications, thigia large improvement in the accuracy of
answers, because it allows the analyst to pay for thoseapuesitich were actually asked in the course of
a computation (which may be only polynomially many), as ggubto all queries which might potentially
be asked, as is necessary for a non-interactive mechaniandt &hd Rothbluni [HR10] gave an improved
mechanism for the interactive setting based on the mul&plie weights framework which achieves bounds
comparable to the improved bounds [of [DRV10], also in thermttive setting. An offline version of this



mechanism (constructed by pairing the online mechanism antagnostic learner for the class of queries
of interest) was given by Gupta et al. [GHRU11], and an expenital evaluation on real data was done
by Hardt, Ligett, and McSherry [HLM11]. Gupta, Roth, and roin unified the online mechanisms of
[RR10,[HR10] into a generic framework (and improved theioebounds) by giving a generic reduction
from online learning algorithms in the mistake bound modeptivate query release algorithms in the
interactive setting [GRU11]. [GRU11] also gives a new medsa based on this reduction that achieves
improved error guarantees for the setting in which the detalsize is comparable to the size of the data
universe.

Following this work, there has been significant attentiornd ga the problem of releasing the class
of conjunctions (a special case of counting queries) with éoror using algorithms with more efficient
run-time than the one given in this paper. Gupta ef al [GHRUMe an algorithm which runs in time
polynomial in the size of the database, and releases the afanjunctions ta@)(1) averageerror while
preserving differential privacy. Hardt, Rothblum, and &elio [HRS11] give an algorithm which runs
in time proportionald® (for databases over a data univerSe= {0,1}¢) and releases conjunctions of
mostk variables with worst-case error guarantees. Their algorimproves over the Laplace mechanism
(which also requires run-timé*) because it only requires that the database size be propmrtbd‘/E (The
Laplace mechanism would require a database ofdixeAs a building block for this result, they also give a
mechanism with run-time proportional #/* which gives average-case error guarantees. Kasiviswamath
et al. [KRSU10] extend the lower bounds [DNO03] from arbiraubset-sum queries to hold also for an
algorithm that only releases conjunctions.

Xiao et al. [XWG10] gave an algorithm for releasing rangergese which extends the class of constant-
dimensional interval queries which we consider in this pape

There has also been progress in proving lower bounds. Dwaidk [DPNRT09] show that in general, the
problem of releasing synthetic data giving non-trivialoefior arbitrary classes of counting queries requires
run-time that is linear in the size of the data universe amdsthe of the query class (modulo cryptographic
assumptions). This in particular precludes improving the-time of the general mechanism presented
in this paper to be only polynomial in the size of the databddiéman and Vadhan [UV11] extend this
result to show that releasing synthetic data is hard evethtBsimple class of conjunctions of at most 2
variables. This striking result emphasizes that outputesgntation is extremely important, because it is
possible to release the answers to all of the (at mdsconjunctions of size 2 privately and efficiently
using output representations other than synthetic datedtldad Talwar showed how to prove lower bounds
for differentially query release using packing argumenis] gave an optimal lower bound for a certain
range of parameters [HT10]. De recently refined this stylarghiment and extended it to wider settings
[Dell]. Gupta et al.[[GHRU11] showed that the class of gsethi@t can be released by mechanisms that
access the database using osigtistical queriegwhich includes almost all mechanisms known to date,
with the exception of the parity learning algorithm lof [KE1Q8]) is equal to the class of queries that can be
agnostically learned using statistical queries. Thissolgt a mechanism even for releasing conjunctions to
subconstant error which accesses the data using only agrolghnumber of statistical queries.

1.2 Motivation from Learning Theory

From a machine learning perspective, one of the measonsone would want to perform statistical analysis
of a database in the first place is to gain information aboaitpibpulation from which that database was
drawn. In particular, a fundamental result in learning tiyés that if one views a database as a collection of
random draws from some distributidp, and one is interested in a particular cléssf boolean predicates
over examples, then a databdsef sizeO(VCDIM (C)/a?) is sufficient so that with high probability, for
everyqueryq € C, the proportion of examples iP satisfyingq is within -« of the true probability mass



underD [AB99, ]E| Our main result can be viewed as asking how much larger doesabase)
have to be in order to do this in a privacy-preserving mantieat is, to allow one to (probabilistically)
construct an outpub that accurately approximaté® with respect to all queries i@, and yet that reveals
no extra information about databaBéd In fact, our notion of distributional privacy (Sectibh 7)imtivated
by this view. Note that sinceteractiveprivacy mechanisms can handle arbitrary queries of this feo
long as onlyo(n) are requested, our objective is interesting only for clegs¢hat contain(2(n), or even
exponentially in» many queries. We will indeed achieve this (Theofem]3.10pediC| > 2VCPM©C),

1.3 Organization

We present essential definitions in Secfibn 2. In Seé&fioresvow that, ignoring computational constraints,
one can release sanitized databases over discretized rdomhait are useful foany concept class with
polynomial VC-dimension. We then, in Sectibh 4, give an &dfit algorithm for privately releasing a
database useful for the class of interval queries. We nertttuthe study of halfspace queries ot

and show in Sectioln 5 that, without relaxing the definitioruséfulness, one cannot release a database that
is privacy-preserving and useful for halfspace queries aveontinuous domain. Relaxing our definition

of usefulness, in Sectidd 6, we give an algorithm that in potgial time, creates a sanitized database that
usefully and privately answers all halfspace queries. Vésgmt an alternative definition of privacy and
discuss its relationship to differential privacy in Senfit

2 Definitions

We consider databases which ard¢uples from some abstract domalt i.e. D € X". We will write

n = | D| for the size of the database. We thinkXfas the set of all possible data-records. For example, if
data elements are represented as bit-strings of lehgtienX = {0, 1} would be the boolean hypercube in

d dimensions. These tuples are not endowed with an ordettiry: &re simply multi-sets (they can contain
multiple copies of the same element X).

A database access mechanism is a randomized magping* — R, whereR is some arbitrary range.
We say thatd outputs synthetic data if its output is itself a database:ii.R = X*.

Our privacy solution concept will be the by now standard awtof differential privacy. Crucial to
this definition will be the notion ofeighboring databasesWe say that two databasés D' € X™ are
neighboringif they differ in only a single data element: i.e. they areghdiors if their symmetric difference
|IDAD'| < 1.

Definition 2.1 (Differential Privacy [DMNSO06]) A database access mechanisin: X" — R is e-
differentially private if for all neighboring pairs of ddtasesD, D’ € X™ and for all outcome events
S C R, the following holds:

Pr[A(D) € S] < exp(e) Pr[A(D") € 9]

In Section ¥, we propose an alternate definition of privagstridutional privacy, and show that it is
strictly stronger than differential privacy. For simptici however, in the main body of the paper, we use

tUsually, this kind of uniform convergence is stated as eioglirerror approximating true error. In our setting, we hage
notion of an “intrinsic label” of database elements. Ratherimagine that different users may be interested in legrdifferent
things. For example, one user might want to learn a rule tdigréeaturex, from featurese, . . ., z4—1; another might want to
use the first half of the features to predict a certain boofeaction over the second half.

2Formally, we only care aboud approximatingD with respect ta”, and want this to be true no matter hé@wvas constructed.
However, if D wasa random sample from a distributid? thenD will approximateD and thereforeD will as well.



the standard definition, differential privacy. All of thegeofs can be adapted to the distributional privacy
notion.

Definition 2.2. Theglobal sensitivityof a queryf is its maximum difference when evaluated on two neigh-
boring databases:
GS; = D) — f(D"]|.
= b et i |f(D) — f(D)]
In this paper, we consider the private release of infornmatiseful for classes aounting queries

Definition 2.3. A counting queryQ,,, defined in terms of a predicaie: X — {0, 1} is defined to be

Qeo(D) = 7210@”%?0(95) :

It evaluates to the fraction of elements in the databasestiadfy the predicate.

Observation 2.4. For any predicatep : X — {0, 1}, the corresponding counting que€y, : X" — [0, 1]
has global sensitivity7Sgp, < 1/n

Proof. Let D, D' € X™ be neighboring databases. Then:

_|{x€D:<p(m):1}|<|{x€D’:gp(ac):1}|—|—1:

Qu(D) = D < D Qu(D') +1/n

Where the inequality follows by the definition of neighbgridatabases. Similarlyp,(D) > Q. (D) —
1/n. The observation then follows. O

We remark that everything in this paper easily extends tcdse of more generlhear queries, which
can are defined analogously to counting queries, but invaaévalued predicateg : X — [0,1]. For
simplicity we restrict ourselves to counting queries irsthaper, but seé [Rotl10] for the natural extension to
linear queries.

A key measure of complexity that we will use for counting deglis VC-dimension. VC-dimension is
strictly speaking a measure of complexity of classes ofipages, but we will associate the VC-dimension
of classes of predicates with their corresponding classwfiting queries.

Definition 2.5 (Shattering) A class of predicate$’ shattersa collection of pointsS C X if for every

T C S, there exists ap € P such thaf{z € S : p(z) = 1} = T. That is,P shattersS if for every one of

the 25! subsetd” of S, there is some predicate i that labels exactly those elements as positive, and does
not label any of the elements )\ 7" as positive.

We can now define our complexity measure for counting queries

Definition 2.6 (VC-Dimension) A collection of predicate$” has VC-dimensiom if there exists some set
S C X of cardinality|S| = d such thatP shattersS, and P does not shatter any set of cardinality- 1.
We can denote this quantity by VC-DI¥?). We abuse notation and also write VC-D(#) whereC' is a
class of counting queries, to denote the VC-dimension ottneesponding collection of predicates.

Dwork et al. [DMNSO6] give a mechanism which can answer anglsi low-sensitivity query while
preserving differential privacy:



Definition 2.7 (Laplace mechanism)l'he Laplace mechanism responds to a qéghy returningQ(D)+Z2
whereZ is a random variable drawn from the Laplace distributign:~ Lap(GSg/€).
The Laplace distribution with scate which we denote by Lgp), has probability density function

Theorem 2.8(Dwork et al. 06]) The Laplace mechanism preservedifferential privacy.

This mechanism answers queries interactively, but for adfixévacy level, its accuracy guarantees
degrade linearly in the number of queries that it answerg fohowing composition theorem is useful: it
tells us that a mechanism which ruhs-differentially private subroutines isc-differentially private.

Theorem 2.9(Dwork et al. [DMNSO06]) If mechanismd\/y, ..., M, are eache-differentially private, then
the mechanismV/ defined by the (string) composition of thenechanismsM (D) = (M (D), ..., Mx(D))
is ke-differentially private.

We propose to construct database access mechanisms whitticprone-shot (non-interactive) outputs
that can be released to the public, and so can necessarilyelbeto answer an arbitrarily large number of
queries. We seek to do this while simultaneously preserpiingacy. However, as implied by the lower
bounds of Dinur and Nissini [DN03], we cannot hope to be ablesefully answer arbitrary queries. We
instead seek to release synthetic databases which areluskffined below) for restricted classes of queries
C.

Definition 2.10 (Usefulness) A database access mechanighis («, ¢)-usefulwith respect to queries in
classC if for every databas® € X", with probability at least —4, the output of the mechanisim = A(D)
satisfies: R
D)—-Q(D)| <
max |Q(D) — QD) < a

In this paper, we will derivéa, §)-useful mechanisms from smailtnets:

Definition 2.11 («-net). An a-net of databases with respect to a class of queriesa setN C X* such
that for allD € X*, there exists an element of thenet D’ € N such that:

max|Q(D) ~ QD) < &

We write N, (C') to denote amv-net of minimum cardinality among the set of alinets forC'.

3 General release mechanism

In this section we present our general release mechanissraritinstantiation of thexponential mechanism
of McSherry and Talwaft [MTQ7].

Given some arbitrary rang®, the exponential mechanism is defined with respect so soraktyqu
functiong : X* x R — R, which maps database/output pairs to quality scores. Weldhoterpret
this intuitively as a measure stating that fixing a dataldasthe user would prefer the mechanism to output
some element oR with as high a quality score as possible.

Definition 3.1 (The Exponential Mechanism [MTD7])The exponential mechanistWz (D, ¢, R) selects
and outputs an elementc R with probability proportional t@xp(gg(GDS’:) ).




McSherry and Talwar showed that the exponential mechanresepres differential privacy. It is im-
portant to note that the exponential mechanism can definerglea distribution over a large arbitrary
domain, and so it may not be possible to implement the exg@henechanism efficiently when the range
of ¢ is super-polynomially large in the natural parameters efglhoblem. This will be the case with our
instantiation of it.

Theorem 3.2([MTO7])). The exponential mechanism presereabfferential privacy.

Algorithm 1 The Net Mechanism
NetMechanism(D, C, ¢, )

Let R «+ N,(C)

Let g : X* x R — R be defined to be:

q(D,D") = — max |Q(D) — (D"

Sample And Output D’ € R with the exponential mechanisM g (D, ¢, R)

We first observe that the Net mechanism presegvdifferential privacy.
Property 3.3. The Net mechanism ésdifferentially private.

Proof. The Net mechanism is simply an instantiation of the expaaentechanism. Therefore, privacy
follows from Theoreni 3]2. O

We may now analyze the usefulness of the net mechanism.

Property 3.4. For any class of querie§’ (not necessarily counting queries) the Net Mechanisf@ds ¢)-

useful for any such that:

2A N,
a > — log ©)
€ )

WhereA = maxgec GSg.

Proof. First observe that the sensitivity of the quality scafg, < maxgecc GSg = A.

By the definition of ana-net, we know that there exists somi¥ € R such thaty(D, D*) > —a.
By the definition of the exponential mechanism, thi$ is output with probability proportional to at least
exp(z_cfg‘q). Similarly, there are at mostV,,(C)| databased)’ € R such thatg(D,D’) < —2« (simply
becauseR = N, (C)). Hence, by a union bound, the probability that the expaakmechanism outputs

someD’ with ¢(D,D’) < —2« is at most|N,(C)| exp(;ées‘z‘). Therefore, if we denote byl the event

that the net mechanism outputs somé with ¢(D, D*) > —«, and denote byB the event that the net
mechanism outputs soni¢’ with ¢(D, D) < —2a, we have:

Pr[A] - exp(5x)
Pr[B] = |[No(C)|exp(552)
exp(33)

[Na(C))|

Note that if this ratio is at leadt/d, then we will have proven that the net mechanisr2is, §) useful with
respect ta’. Solving fora, we find that this is condition is satisfied so long as

o> 28 log Na(C)
€ o




O

We have therefore reduced the problem of giving upper boandse usefulness of differentially private
database access mechanisms to the problem of upper bouhdisgnsitivity of the queries in question, and
the size of the smallest-net for the set of queries in question. Recall that dounting queries@ on
databases of size, we always hav&rSy < 1/n. Therefore we have the immediate corollary:

Corollary 3.5. For any class of counting querigs the Net Mechanism iR« ¢)-useful for anya such

that: ) NAC
a > —log o(C)
en 0

To complete the proof of utility for the net mechanism for gting queries, it remains to prove upper
bounds on the size of minimal-nets for counting queries. We begin with a bound for finitessks of
queries.

Theorem 3.6. For any finite class of counting queriés

log |C|
[Na(C)] < X2

In order to prove this theorem, we will show that for any cdilen of counting querieg€’ and for any
databaseé), there is a “small” database’ of size|D’| = h’fy# that approximately encodes the answers to
every query inC, up to errora. Crucially, this bound will be independent [d@|.

Lemma 3.7. For any D € X* and for any finite collection of counting queri€s there exists a database
D’ of size

log |C
‘D/’ — Og|2 |
[0
such that:
D) -Q(D"| <
rgggl@( )= QD) <«
Proof. Letm = 1°i‘f| We will construct a databasB’ by takingm uniformly random samples from the

elements oD. Specifically, fori € {1,...,m} let X; be a random variable taking valug with probability
{z € D :z =x;}|/|D|, and letD’ be the database containing elemeXis. . . , X,,,. Now fixany@,, € C
and consider the quantity,(D’). We have:Q,(D’) = L 3" | x(X;). We note that each term of the sum

©(X;) is a bounded random variable taking valfes ¢(X;) < 1, and that the expectation &f,(D’) is:

m

Z E[@(Xi)] = Qso(D)

i=1

E[Q(D)] =

1
m
Therefore, we can apply a standard Chernoff bound whictsgive

Pr [|Qu(D) — Qu(D)| > a] < 2¢72m”

Taking a union bound over all of the counting querigs € C, we get:

- 7’I’LCY2
Pr &%%‘Qw(D/) —Qu(D)| > a| <2[Cle 2

Plugging inmm makes the right hand side smaller thiagso long a§C| > 2), proving that there exists a
database of sizen satisfying the stated bound, which completes the proof@femma. O
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Now we can complete the proof of Theorém|3.6.

Proof of Theorerh 3]6By Lemmd3.Y, we have that for aiy € X* there exists a databag® € X* with
D[ = 2510 such thatmaxg, e |Qu(D) — Qu(D')| < a. Therefore, if we takeV = {D’ € X* : |D'| =
bi—‘f'} to be the set oéverydatabase of sizM, we have amv-net forC. Since

a2
log |C|
[N| = | X[
and by definition N, (C)| < |N|, we have proven the theorem. O

For infinite concept class&s, we can replace lemnia 8.7 with the following lemma:

Lemma 3.8([AB99,Vap98]) ForanyD € X* and for any collection of counting queri€ there exists a
databaseD’ of size
|D'| = O(VCDIM(C)log(1/a)/a?)

such that:
max |Q(D) = Q(D)| < a
This lemma straightforwardly gives an analogue of Thedren 3
Theorem 3.9. For any class of counting queri€s:
INL(C)]| < ‘X’O(VCDIM(C)log(l/a)/oF)
Note that we always have VCDIM') < log|C] for finite classes of counting queries, and so Theorem

[3.9 is strictly stronger than Theorém 3.6.
Finally, we can instantiate Corollafy 3.5 to give our maitityttheorem for the Net Mechanism.

Theorem 3.10. For any class of counting queri€s the Net Mechanism igy, ¢)-useful for any such that:

a>0 (6;2” (VCDIM(C) log | X | log(1/a) + log 1/5)>

Solving fora, the Net Mechanism igy, §)-useful for:

I ((VCDIM(C) log X + log 1/5>1/3>

en

Theoren{3.I0 shows that a database of si&EXYPMC)) is gyfficient in order to output a set of
points that isa-useful for a concept class, while simultaneously preservingdifferential privacy. If we
were to view our database as having been drawn from somébdigtn D, this is only an extraﬁ(l"g[g—f)
factor larger than what would be required to achievesefulness with respect tB, even without any
privacy guarantee!

The results in this section only apply for discretized dassbdomains, and may not be computationally
efficient. We explore these two issues further in the remaisiections of the paper.
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3.1 The Necessity of a Dependence on VC-Dimension

We just gave ar-differentially private mechanism that {g, §)-useful with respect to any set of count-
ing queriesC, when given a database of size> O(W). In this section, we show that the

dependence on the VC-dimension of the class tight. Namely:

Theorem 3.11.For any class of counting queri&s, for any0 < § < 1 bounded away frorih by a constant,

for anye < 1, if M is ane-differentially private mechanism that {&, §) useful forC' given databases of
. VCDIM(C 1

Proof. Fix a class of counting querigs corresponding to a class of predicate®f VC-dimensiond. Let

S C X denote a set of universe elements of gize = d that areshatteredby P, as guaranteed by the

definition of VC-dimension. We will consider all subsétsc S of size|T'| = d/2. Denote this set by

Dg={T C S:|T|=d/2} Foreach sucli’ € Dg, letor be the predicate such that:

1, €T,

as guaranteed by the definition of shattering, andlet= Q.. be the corresponding counting query.
First we prove a simple lemma:

Lemma 3.12. For every pairl, T’ € Dg:

!
Qr(T) — Qr(T') = |TAdT |
Proof.
1
Qr(T) - Qr(T") = ] (Z pr(e) =Y <PT(9€)>
zeT zeT’
2
= 3 Yo ler@) —er@)+ Y er@@)— Y er(@)
z€TNT c€T\T' 2€T'\T
_ 2 /
= ST\
_|TAT|
N d
where the last equality follows from the fact thay = |77|. O

This lemma will allow a sufficiently useful mechanism for ttlass of querie€’ to be used to reconstruct
a database selected frdly with high accuracy.

Lemma 3.13. For any0 < ¢ < 1 bounded away fron by a constant, lef/ be an(«;, §)-useful mechanism
for C. Given as inputV/ (7') whereT is any databasd’ € Dg, there is a procedure which with constant
probability 1 — § reconstructs a databasg’ with |7"AT| < 2da.

Proof. Write D" = M (T'). With probability at least — ¢, we havemaxgec |Q(T) — Q(D’)| < a. For the
rest of the argument, assume this event occurs. ForBaehDg, define:

v = Qp(T") — Qp/(D')

11



Let T’ = argmingcp, vy We have:
v <vp = Qr(T) — Qr(D') < «

by the accuracy of the mechanism. By combining the accurétliygeomechanism with Lemnfa 3112, We

also have:
|TAT'|

d
Combining these two inequalities yields a databBSsuch that|TAT’| < 2d« as claimed. O

v 2

We can now complete the proof. L&t Dg be a set selected uniformly at random, de€ 7" be an
element ofI” selected uniformly at random, and e S \ T be an element of \ 7" selected uniformly at
random. Note that the marginal distributions@andy are identical: both are uniformly random elements
from S. LetT = (T \ {z}) U {y} be the set obtained by swapping elementandy. Note that7" is
also distributed uniformly at random fro®g. Let 7’ be the set reconstructed frolY = M (T') as in
lemma[3.1IB, and lef” be the set reconstructed froPl = M (7). Assume thatT’AT’| < 2d« and that
|TAT’| < 2de, which occurs except with probability at mast. We now have:

T| — (1/2)|TAT'| 2 —d
Pr[meT’]:|| (1/2)] |22 o
T d

By symmetry:
N AT
Prlz € T'] = 7(1/2)‘TAT | < dTa =2«
7| 2
Now recall thaleAT| < 2 and so by the fact that/ is e-differentially private, we also know:

Prz € T"] - 1-2a 1

exp(2e) > — > =— -1
(2¢) Pr[z € T"] 2a 20
Because we also hawep(2¢) < 1 + 8¢, we can solve to find > ﬁ. O

4 Interval queries

In this section we give aefficientalgorithm for privately releasing a database useful forcthss of interval
gueries over a discretized domain, given a database of slggolynomial in our privacy and usefulness
parameters. We note that our algorithm is easily extendétketolass of axis-aligned rectanglesiidimen-
sional space fotl a constant; we present the caselef 1 for clarity.

Consider a database of n points in a discrete intervd]l, . ..,2%} (in Corollary[5.2 we show some
discretization is necessary). Given < ap, both in{1,2,...,2¢}, let I,, ,, be the indicator function
corresponding to the intervéd;, as]. That is:

I ((L’)_ 17 a1§x§a2;
a2 0, otherwise.

Definition 4.1. An interval queryQ)|,, o,) is defined to be

Iy, a0y ()
Qo)D) = 3 5=
zeD

12



Algorithm 2 An algorithm for releasing synthetic data for interval desr
Releaselnterval§$D, o, ¢)
Let o/ < a/6, MaxIntervals« [4/3d/], € «+ €/(d - MaxIntervals.
Let Bounds be an array of length MaxIntervals
Let i + 1, Bound$0] < 1
while Boundsi — 1] < 2% do
a < Boundgi — 1], b+ (2¢ — a + 1)/2, increment— (2¢ —a + 1) /4
while increment> 1 do
Let v <+ Q[&b] (D) + Lap(l/(e’n))

if o > o then
Let b < b — increment
else
Let b < b+ increment
end if
Let increment«— incremenf2
end while
Let Boundsi| <— b, < i+ 1
end while

Output D', a database that hasm points in each intervgBounds$; — 1], Bound$;]| for eachj € [i],
for anym > L.

Note thatGSQ[%aQ] = 1/n, and we may answer interval queries while preservhdifferential privacy
by adding noise proportional to L&y (en)).

We now give the algorithm. We will assume for simplicity tlaitpointsx, 2’ € D are distinct, but this
condition can be easily discarded. The algorifim 4 is vemypg. It repeatedly performs a binary search
to partition the unit interval into regions that have appmuately anc’ fraction of the point mass in them.
It then releases a database that has exactly’ draction of the point mass in each of the intervals that it
has discovered. There are at mest /o’ such intervals, and each binary search terminates afteositdn
rounds (because the interval consists of at m2@gioints). Therefore, the algorithm requires ortyd/o/
accesses to the database, and each one is performed in @y mieserving manner using noise from the
Laplace mechanism. The privacy of the mechanism then feliownediately:

Theorem 4.2. Releaselntervals isdifferentially private.

Proof. The algorithm runs a binary search at mpst3«’] times. Each time, the search halts aftejueries

to the database using the Laplace mechanism. Each quefy differentially private (the sensitivity of an
interval query isl /n since it is a counting query). Privacy then follows from tledinition of ¢ and the fact

that the composition of differentially private mechanisms is: differentially private. O

Theorem 4.3. Releaselntervals i§y, ¢)-useful for databases of size:

8d <8d>
n>—-log | —
eQ da

Proof. By a union bound and the definition of the Laplace distributih the database size satisfies the
hypothesis of the theorem, then except with probability asim, none of the(4/3)d/a’ draws from the
Laplace distribution have magnitude greater th&n That is, at every step, we hajie— Qlap(D)| < a’?
except with probabilitys. Conditioned on this event occurring, for each intefBadunds; — 1],Bounds;]]
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for j € [i], faoundsj—1],8ounasj](D) € [/ — a’?,&/ + a’?]. In the synthetic database’ released, each
such interval contains exactly ari fraction of the database elements. We can now analyze theiasr
curred on any query when evaluated on the synthetic databstsad of on the real database. Any in-
terval [Bounds$j — 1],Bounds$j]] C [a,b] will contribute error at most’ to the total, and any interval
[Bound$j — 1],Bounds;j]] ¢ [a, b] that also intersects withu, b] contributes error at mogt/ + o/?) to the
total. Note that there are at most 2 intervals of this secgpe.tTherefore, on any quegy, ; we have:

|Qrap)(D') = Qo (D) < > | Q(Bounds;j—1],Bounds;]] (D) — Q[Bounds;j—1],8ounds;]] (D)
j:[Bounds; —1],Bounds;]]N[a,b]#0

4
FO/2_|_2(O/_|_O/2)
o
6a’

a

IN

IN

O

We note that although the class of intervals (and more giynd@v dimensional axis-aligned rectan-
gles) is a simple class of functions, it nevertheless coatakponentially many queries, and so it is not
feasible to simply ask all possible interval queries usingnéeractive mechanism.

5 Lower bounds

Could we possibly modify the results of Sectidfs 4 ahd 3 td iai non-discretized databases? Suppose we
could usefully answer an arbitrary number of queries in seimple concept class' representing interval
gueries on the real line (for example, “How many points argained within the following interval?”) while
still preserving privacy. Then, for any database contajrsimgle-dimensional real valued points, we would
be able to answer median queries with values that fall beiwee50 — §, 50 + ¢ percentile of database
points by performing a binary search énhusing A (wherej = §(«) is some small constant depending on
the usefulness parametey. However, answering such queries is impossible whileauaeing differential
privacy. Unfortunately, this would seem to rule out ussfehswering queries in simple concept classes
such as halfspaces and axis-aligned rectangles, that meeadjeations of intervals.

We say that a mechanism answers a median qliensefully if it outputs a real value such that- falls
within the 50 — 6, 50 + ¢ percentile of points in databage for somed < 50.

Theorem 5.1.No mechanismi can answer median queridd with outputs that fall between tt6— ¢, 50+
0 percentile with positive probability on any real valued aaase D, while still preservinge-differential
privacy, ford < 50 and anye.

Proof. Consider real valued databases containing elements intérwal [0, 1]. Let Dy = (0,...,0) be the
database containing points with value 0. Supposé can answer median queries usefully. Then we must
havePr[A(Dy, M) = 0] > 0 since every point irDy is 0. Sincel0, 1] is a continuous interval, there must
be some value € [0, 1] such thatPr[A(Dy, M) = v] = 0. LetD,, = (v,...,v) be the database containing
n points with valuev. We must hav@r[A(D,,, M) = v] > 0. Forl <i < n,letD; = (0,...,0,v,...,v).
Then we must have for somePr[A(D;, M) = v] = 0 but Pr[A(D;41, M) = v] > 0. But sinceD; and
D, 4 differ only in a single element, this violates differentglvacy. O
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Corollary 5.2. No mechanism can by, 6)-useful for the class of interval queries, nor for any cl&@ss
that generalizes interval queries to higher dimensions éi@mple, halfspaces, axis-aligned rectangles, or
spheres), while preservingdifferential privacy, for anyy, 6 < 1/2 and anye > 0.

Proof. Consider any real valued database containing elements intigrval(0, 1]. If A is («, ¢)-useful for
interval queries and preserves differential privacy, theencan construct a mechanisai that can answer
median queries usefully while preserving differentialady. By Theorerh 511, this is impossiblé’ simply
computesD = A(D), and performs binary search dnto find some interval0, a] that contains:/2 + an
points. Privacy is preserved since we only acdeskroughA, which by assumption preserveslifferential
privacy. With positive probability, all interval queries ® are correct to withinte, and so the binary search
can proceed. Since < 1/2, the result follows. O

We may get around the impossibility result of Corollaryl 5y2é&laxing our definitions. One approach is
to discretize the database domain, as we do in Se¢flons[3 abther approach, which we take in Section
[B, is to relax our definition of usefulness.

6 Answering Halfspace Queries

In this section, we give a non-interactive mechanism fagasing the answers to “large-margin halfspace”
queries, defined over databases consisting wiit-length points irfR?. The mechanism we give here will
be different from the other mechanisms we have given in tspeets. First, although it is a non-interactive
mechanism, it will not output synthetic data, but insteadther data structure representing the answers to
its queries. Second, it will not offer a utility guarantee &l halfspace queries, but only those that have
“large margin” with respect to the private database. Largegin, which we define below, is a property that
a halfspace has with respect to a particular database. Nattdy our impossibility result in the previous
section, we know that without a relaxation of our utility ¢a@o private useful mechanism is possible.

Definition 6.1 (Halfspace Queries)For a unit vectory € R?, the halfspacequery f, : R — {0,1} is

defined to be: >
1 i (z,y) > 0;
Ju(@) = { 0, Otherwise.

LetCy = {f, : y € R%||y||2 = 1} denote the set of all halfspace queries.
With respect to a database, a halfspace can have a cevéagin-y:

Definition 6.2 (Margin). A halfspace query, has marginy with respect to a databage ¢ (RH)™ if for all
z € D [(z,y)] > 7.

Before we present the algorithm, we will introduce a usefgh fabout random projections, called the
Johnson-Lindenstrauss lemma. It states, roughly, thaidh@ of a vector is accurately preserved with high
probability when the vector is projected into a lower dimenal space with a random linear projection.

Theorem 6.3(The Johnson-Lindenstrauss Lemrha [DG99, BBVO&)r d > 0 an integer and any) <
¢,7 < 1/2, let A be aT x d random matrix withd=1/+/7 random entries, fofl' > 20¢~2log(1/7). Then
for anyz € R%:

Pr{|[|Az|l3 — |l=l3] > ll[|3] < 7

For our purposes, the relevant fact will be that norm presgrgrojections also preserve pairwise inner
products with high probability. The following corollary vgell known.
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Corollary 6.4 (The Johnson-Lindenstrauss Lemma for Inner Produd®s) ¢ > 0 an integer and any
0 <g,7 < 1/2, let Abe aT x d random matrix witrt=1/+/T random entries, fol” > 20¢~2 log(1/7).
Then for anyr € R%:

Pr{[((Az), (Ay)) — (@, )| 2 %(HwH% +yl)) < 27

Proof. Consider the two vectorg = = + y andv = = — y. We apply Theorerf 613 to andv. By a union
bound, except with probabilitgr we have:|||A(z + y)[|3 — ||z + y|[3] < <[|z + y|/3 and|||A(z — y)||3 —
[l —y|[3] < ||z — yl|3. Therefore:

((Az), (Ay)) = - (Alz+y), Alz +y)) — (Alz —y), Az — y)))

([A@ + )3 + [[A@ = )II3)

1
1
1
1
1
1 (49 +ylff = (L= 9)llz —ylf3)

S
— (@) + 5 (ol + Ilyl1)

An identical calculation shows thatAz), (Ay)) > (z,y) — 5 (||z[|3 + ||y||3), which completes the proof.
U

Instead of outputting synthetic data, our algorithm wiltmut a datastructure based on a collection of
random projections.

Definition 6.5 (Projected Halfspace Data Structuré) 7" dimensional projected halfspace data structure of
sizem, Dy = {{4;},U,{v; ;}} consists of three parts:

1. m independently selected random projection matri¢es . ., A,, € RT*¢ mapping vectors frorik?
to vectors inR™".

2. A collection ofT-dimensional unit vectorsf ¢ RT
3. Foreach € [m] andj € U, areal number; ; € R.

A projected halfspace data structubg; can be used to evaluate a halfspace qygras follows. We write
fy(Dg) to denote this evaluation:

1. Fori € [m], compute the projectiop; € R” as:j; = A; - .

2. For eachi € [m] computeu; ;;) = argmin, ¢y |[9i — u;l|2

3. Outputf, (D) = £ 5" v i)

What the projected halfspace data structure does is maintarojections into a low dimensional space,
as well as a collection of ‘canonical’ halfspacEsin T° dimensions. The canonical halfspaces will be
selected to form a net such that for evgrg R” with ||y||2 = 1, there is some € U; such that|j — ul|s <
v/4. The size ofU will be exponential iril’, but we will choosel” to be only a constant so that maintaining
such a set is feasible. Each; will represent the approximate answer to the qugryon a projection of the
private database hy;. The Johnson-Lindenstrauss lemma will guarantee that aaymoints with margin
~/2 are shifted across the target halfspace by any particutgegiron, and the average of the approximate
answers across aih projections will with high probability be accurate for eydralfspace.

First we bound the size of the needed bidfor halfspaces.
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Definition 6.6. A y-net for unit vectors ifR” is a set of pointd/ ¢ R” such that for al: € R” with
|[z[l2 = 1:

min ||z — <

yeRTH ylla <~

T
Claim6.7. There is ay-net for unit vectors iR” of size|U| < (@) .

Proof. Consider the set df” dimensional vectors discretized to the nearest multiple/afT in each co-

T
ordinate. There aré@) such vectors. For any unit € RT, lety = argmin,cgr ||z — y|[2. We have:

Iz = yll2 < /i, (VT2 = . O

We can now present our algorithm.

ReleaseHalfspacd®), d, v, a, €)
Let:

2

e T % T + [20¢ 2 log(1/7)] m + %d <log(4\/a/7) + log(l/ﬁ))

Let A4; € {—1/V/T,1/v/T}"*? be a uniformly random matrix for eaghe [m].
Let U be avy/4-net for unit vectors iR
for i = 1tomdo
Let D; c RT beD; = {A;z : x € D}.
for z; € U do
Let Dij < Lap (WZL[L”), Vi j < ij (ﬁz) +pi,j
end for

end for
ReleaseDy = ({A;}, U, {vi;}).

Theorem 6.8. ReleaseHalfspaces preservedifferential privacy.

Proof. Privacy follows from the fact that the composition lofe-differentially private mechanisms fsc-
differentially private The algorithm makes|U| calls to the Laplace mechanism, and each call preserves
e/(m|U])-differential privacy (since each query has sensitivity.). O

Theorem 6.9. For any database) with:

. m(S\/ET/v)T los <2m(\/§/v)T>

Then except with probability at most Dy = ReleaseHalfSpacéb, d, v, «, €) is such that for each unit
vectory € R with margin~ with respect taD: |fy(D) — fy(Dm)| < «. The running time of the algorithm
and the bound on the size pfare both polynomial fory, v € ©(1).

Proof. The analysis follows from the Johnson-Lindenstrauss lerantha Chernoff bound. Létf? be a
~/4-net for unit vectors iR?. Fix anyy € R? such thatf, has marginy with respect taD, and lety’ =
argming, <a ||y — 3'[[2- Note thatf,, has margin at leas}y with respect taD and thatf, (D) = f,(D).
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Consider the quantityf, (D) — f,,(Dm)|, whereDy is the projected halfspace data-structure output by
ReleaseHalfspaces. By Corollary16.4, for eaeh[m] and each: € D:

Pr(|{(Asz), (Aiy))) = (@, ¢} = /4] < a/4

By linearity of expectation, the expected number of point®imoved by more than /4 with respect ta/’
in any projection is at mostn /4:

B lte € D (o) = fay () Al A = 201 20 (1)

Letw, , = argmin,cy ||u — Aiy/||2. Becausé|u;,, — A;y/||2 < v/4, we have for any: € D;:
[{Aiys )] = [(ui, o) + (A — i, )| < [, )] + (| Ay — iyl 2l2]]2 < (uiy 2) + /4
Thus:
1 «
B 1o € D't (@) = fu (i) A i) = o] 2 (1-5)

In other words,f, (D) — a/4 < E[fu, ,(D;)] < fy(D) + a/4. Moreover, for each, f,, ,(D;)is an
independent random variable taking values in the boundegera, 1], and so we will be able to apply a

Chernoff bound. For eacil:
2
] <2exp (—%)

Taking a union bound over a{|4\/_/’y) vectorsy’ € U? and plugging in our chosen value of, and
recalling our bound o[ f, ,(D)] we find that:

|9

RIS fu, (D)~ Bl (D)) >
=1

W™

max—quw, D) = 2 <

yeud m

Also note that the algorithm makes|U | draws from the distribution Laém‘U|

these draws to valugs ;. Except with probability at most/3, we have for all;, ;-
m|U| 2m|U]|
il < 1 <1
Ipigl < =~ og( e
Therefore, conditioning ofp; ;| < 1 for all ¢, j and applying another Chernoff bound, we find that for any
sequence of indicegi):
1 — ma?
il Y piso) = /1] < 2exp (-5 )
i=1

Again taking a union bound and plugging in our valuerafwe find that:

) during its run, assigning

Pr| max |— i > a/4] <
| max |- ij =0/

Wl

Finally, conditioning on these three events (which togetiur except with probabilitys), we have for
anyy’:
1 m 1 m . m
= oy ;Uz’,j(i) = m (Z; fui_’y/ (D;) + ;]%’,j(i)) < fy’(D) + o
which completes the proof. O
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7 Distributional Privacy

In this section we give an alternative privacy definition,tiveted by learning theory, and show that it is a
strengthening of differential privacy.

Definition 7.1 (S-neighbors) For any subset of the universe C X of size|S| > n, we say that two
databases arg&-neighbors if they were both drawn at randanthout replacemenfrom S.

Definition 7.2 (Distributional Privacy) We say that a mechanisth: X" — R satisfieq, 3)-distributional
privacyif for any S C X, and for any pair of databaseés;, D, C X of sizen which areS-neighbors, with
probability 1 — 3 over the draw of the databases we have for all evehts R:

Pr[A(D,) € E] < e“Pr[A(D2) € E].

For example, suppose that a collection of hospitals in aregach treats a random sample of patients
with diseaseX. A hospital can release information with a guarantee ofridigtional privacy, which is
informative about patients in the region, without reveglivhich hospital the data came from. Actually, our
main motivation is that this definition is particularly neglfrom the perspective of learning theory: given
a sample of points drawn from some distributiBnone would like to reveal no more information about the
sample than is inherent iR itself.

We will typically think of 5 as being exponentially small, whereasust be2(1/n) for A to be useful.

7.1 Relationship Between Definitions

It is not a priori clear whether either differential privaoy distributional privacy is a stronger notion than
the other, or if the two are equivalent, or distinct. On the ¢and, differential privacy only provides
a guarantee whem; and D, differ in a single elemerﬁ,whereas distributional privacy can provide a
guarantee for two databas®s and D that differ in all of their elements. On the other hand, distiional
privacy makes the strong assumption that the elements;imand D, are drawn from some distribution
D, and allows for privacy violations with some exponentialiyall probability3 (necessarily: with some
small probability, two databases drawn from the same Higion might nevertheless possess very different
statistical properties). However, as we show, distrimaloprivacy is a strictly stronger guarantee than
differential privacy.

Theorem 7.3. If A satisfies(e, 3)-distributional privacy for any3 = o(1/n?), thenA satisfies-differential
privacy.

Proof. Consider any databadge; drawn from domain¥, and any neighboring databaBeg that differs from
D, inonly a single element € X. LetS = D; U {z} be a set of sizéS| = n + 1. Consider twoS-
neighborsD’ and Dy’, then with probability2/n? we have{D’, D}} = {Ds, D2}, and so if3 = o(1/n?),
we have with certainty that for all evenis

Pr[A(D}) € E] < e Pr[A(D}) € EJ.
Since this holds for all pairs of neighboring databasksatisfies-differential privacy. O
Definition 7.4. Define themirrored modm functionas follows:

Fo(z) = r mod m, if x mod 2m < m;
1 —2—1 mod m, otherwise.

3We gette-differential privacy forD; and D that differ int elements.
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For a databas® c {0,1}", define the query

Note that the global sensitivity of any que€y,, satisfiesGSg,, < 1. Therefore, the mechanisr that
answers querie®,, by A(D,Q,,) = Q.(D) + Z whereZ is drawn from Lapl/¢) satisfies-differential
privacy.

Theorem 7.5. There exist mechanismasthat satisfye-differential privacy, but do not satisfy, 3)-distributional
privacy for anye < 1, 5 = o(1) (that is, for any meaningful values aff).

Proof. Consider databases with elements drawn fridm= {0,1}" and the queryQ,,. As observed
above, a mechanist such thatA(D, Q;) = Q;(D) + Z for Z ~ Lap(1/e) satisfies-differential privacy
for anyi. Note however that with constant probability, two datakaBe, D, drawn fromS = X have
|Q2/c(D1) — Q2/(D2)| > 1/e. Therefore, for any output, we have that with constant probability over
draws of twoS neighborsD, and D-:

Pr[A(Dy, Qz/e) = 1 — o—€lQ2/e(D1)=Qa/c(D2))|
Pr[A(Dz,Qs/c) = ]

_ b

Therefore the mechanism does not satidfyo(1))-distributional privacy. O

Although there are simpler functions for which preservingtributional privacy requires more added
noise than preserving differential privacy, the mirroradd function above is an example of a function
for which it is possible to preserve differential privacyetidly, but yet impossible to reveal any useful
information while preserving distributional privacy.

We note that in order for distributional privacy to imply féifential privacy, it is important that in the
definition of distributional privacy, database elementsdnawn from some distributio® without replace-
ment Otherwise, for any non-trivial distribution, there is selatabasé, that is drawn with probability
at most1/2", and we may modify any distributional-privacy preservingamanismA such that for every
query@, A(D,,Q) = D,, and for anyD; # D,, A(D;, Q) behaves as before. Since this new behavior
occurs with probability< 5 over draws fromD for 5 = O(1/2"), A still preserves distributional privacy,
but no longer preserves differential privacy (which regsithat the privacy guarantee hold &verypair of
neighboring databases).

8 Conclusions and Open Problems

In this paper we have shown a very general information thigoresult: that small nets are sufficient to
certify the existence of accurate, differentially privatechanisms for a class of queries. For counting
queries, this allows algorithms which can accurately angieries from a clas§' given a database that is
only logarithmicin the size ofC’, or linear its VC-dimension. We then also gave an efficiegbathm for
releasing the class of interval queries on a discrete iateand for releasing large-margin halfspace queries
in the unit sphere.

The main question left open by our work is the design of ators which achieve utility guarantees
comparable to our net mechanism, but have running time atjgnpmial inn, the size of the input database.
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This question is extremely interesting even for very specifasses of queries. Is there such a mechanism
for the class of conjunctions? For the class of parity qs€rie
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