28,082 research outputs found

    RECOMAC: a cross-layer cooperative network protocol for wireless ad hoc networks

    Get PDF
    A novel decentralized cross-layer multi-hop cooperative protocol, namely, Routing Enabled Cooperative Medium Access Control (RECOMAC) is proposed for wireless ad hoc networks. The protocol architecture makes use of cooperative forwarding methods, in which coded packets are forwarded via opportunistically formed cooperative sets within a region, as RECOMAC spans the physical, medium access control (MAC) and routing layers. Randomized coding is exploited at the physical layer to realize cooperative transmissions, and cooperative forwarding is implemented for routing functionality, which is submerged into the MAC layer, while the overhead for MAC and route set up is minimized. RECOMAC is shown to provide dramatic performance improvements of eight times higher throughput and one tenth of end-to-end delay than that of the conventional architecture in practical wireless mesh networks

    A cross layer multi hop network architecture for wireless Ad Hoc networks

    Get PDF
    In this paper, a novel decentralized cross-layer multi-hop cooperative network architecture is presented. Our architecture involves the design of a simple yet efficient cooperative flooding scheme,two decentralized opportunistic cooperative forwarding mechanisms as well as the design of Routing Enabled Cooperative Medium Access Control (RECOMAC) protocol that spans and incorporates the physical, medium access control (MAC) and routing layers for improving the performance of multihop communication. The proposed architecture exploits randomized coding at the physical layer to realize cooperative diversity. Randomized coding alleviates relay selection and actuation mechanisms,and therefore reduces the coordination among the relays. The coded packets are forwarded via opportunistically formed cooperative sets within a region, without communication among the relays and without establishing a prior route. In our architecture, routing layer functionality is submerged into the MAC layer to provide seamless cooperative communication while the messaging overhead to set up routes, select and actuate relays is minimized. RECOMAC is shown to provide dramatic performance improvements, such as eight times higher throughput and ten times lower end-to-end delay as well as reduced overhead, as compared to networks based on well-known IEEE 802.11 and Ad hoc On Demand Distance Vector (AODV) protocols

    Lifetime Improvement in Wireless Sensor Networks via Collaborative Beamforming and Cooperative Transmission

    Full text link
    Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as communication techniques that can make effective use of collaborative/cooperative nodes to create a virtual multiple-input/multiple-output (MIMO) system. Extending the lifetime of networks composed of battery-operated nodes is a key issue in the design and operation of wireless sensor networks. This paper considers the effects on network lifetime of allowing closely located nodes to use CB/CT to reduce the load or even to avoid packet-forwarding requests to nodes that have critical battery life. First, the effectiveness of CB/CT in improving the signal strength at a faraway destination using energy in nearby nodes is studied. Then, the performance improvement obtained by this technique is analyzed for a special 2D disk case. Further, for general networks in which information-generation rates are fixed, a new routing problem is formulated as a linear programming problem, while for other general networks, the cost for routing is dynamically adjusted according to the amount of energy remaining and the effectiveness of CB/CT. From the analysis and the simulation results, it is seen that the proposed method can reduce the payloads of energy-depleting nodes by about 90% in the special case network considered and improve the lifetimes of general networks by about 10%, compared with existing techniques.Comment: Invited paper to appear in the IEE Proceedings: Microwaves, Antennas and Propagation, Special Issue on Antenna Systems and Propagation for Future Wireless Communication

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore