3 research outputs found

    Non-consensus opinion model on directed networks

    Full text link
    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a non-consensus opinion model introduced by Shao et al. \cite{shao2009dynamic} on directed networks. We define directionality ξ\xi as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ\rho between the indegree and outdegree of a node to quantify the relation between the indegree and outdegree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ\xi and linear correlation coefficient ρ\rho and to study how ξ\xi and ρ\rho impact opinion competitions. We find that, as the directionality ξ\xi or the indegree and outdegree correlation ρ\rho increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered

    Correlation between centrality metrics and their application to the opinion model

    Get PDF
    In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The m order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the B_{n}, the closeness, and the components of x_{1} are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between x_{1} and the 2nd-order degree mass is larger than that between x_{1} and a lower order degree mass. Finally, we investigate the effect of the inflexible antagonists selected based on different centrality metrics in helping one opinion to compete with another in the inflexible antagonists opinion model. Interestingly, we find that selecting the inflexible antagonists based on the leverage, the B_{n}, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the B_{n}, as well as a high centrality similarity between the leverage and the degree.Comment: 20 page
    corecore