597 research outputs found

    Privacy-Friendly Collaboration for Cyber Threat Mitigation

    Full text link
    Sharing of security data across organizational boundaries has often been advocated as a promising way to enhance cyber threat mitigation. However, collaborative security faces a number of important challenges, including privacy, trust, and liability concerns with the potential disclosure of sensitive data. In this paper, we focus on data sharing for predictive blacklisting, i.e., forecasting attack sources based on past attack information. We propose a novel privacy-enhanced data sharing approach in which organizations estimate collaboration benefits without disclosing their datasets, organize into coalitions of allied organizations, and securely share data within these coalitions. We study how different partner selection strategies affect prediction accuracy by experimenting on a real-world dataset of 2 billion IP addresses and observe up to a 105% prediction improvement.Comment: This paper has been withdrawn as it has been superseded by arXiv:1502.0533

    SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning

    Get PDF
    Performing machine learning (ML) computation on private data while maintaining data privacy, aka Privacy-preserving Machine Learning~(PPML), is an emergent field of research. Recently, PPML has seen a visible shift towards the adoption of the Secure Outsourced Computation~(SOC) paradigm due to the heavy computation that it entails. In the SOC paradigm, computation is outsourced to a set of powerful and specially equipped servers that provide service on a pay-per-use basis. In this work, we propose SWIFT, a robust PPML framework for a range of ML algorithms in SOC setting, that guarantees output delivery to the users irrespective of any adversarial behaviour. Robustness, a highly desirable feature, evokes user participation without the fear of denial of service. At the heart of our framework lies a highly-efficient, maliciously-secure, three-party computation (3PC) over rings that provides guaranteed output delivery (GOD) in the honest-majority setting. To the best of our knowledge, SWIFT is the first robust and efficient PPML framework in the 3PC setting. SWIFT is as fast as (and is strictly better in some cases than) the best-known 3PC framework BLAZE (Patra et al. NDSS'20), which only achieves fairness. We extend our 3PC framework for four parties (4PC). In this regime, SWIFT is as fast as the best known fair 4PC framework Trident (Chaudhari et al. NDSS'20) and twice faster than the best-known robust 4PC framework FLASH (Byali et al. PETS'20). We demonstrate our framework's practical relevance by benchmarking popular ML algorithms such as Logistic Regression and deep Neural Networks such as VGG16 and LeNet, both over a 64-bit ring in a WAN setting. For deep NN, our results testify to our claims that we provide improved security guarantee while incurring no additional overhead for 3PC and obtaining 2x improvement for 4PC.Comment: This article is the full and extended version of an article to appear in USENIX Security 202

    Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms

    Full text link
    The advent of federated learning has facilitated large-scale data exchange amongst machine learning models while maintaining privacy. Despite its brief history, federated learning is rapidly evolving to make wider use more practical. One of the most significant advancements in this domain is the incorporation of transfer learning into federated learning, which overcomes fundamental constraints of primary federated learning, particularly in terms of security. This chapter performs a comprehensive survey on the intersection of federated and transfer learning from a security point of view. The main goal of this study is to uncover potential vulnerabilities and defense mechanisms that might compromise the privacy and performance of systems that use federated and transfer learning.Comment: Accepted for publication in edited book titled "Federated and Transfer Learning", Springer, Cha

    XONN: XNOR-based Oblivious Deep Neural Network Inference

    Get PDF
    Advancements in deep learning enable cloud servers to provide inference-as-a-service for clients. In this scenario, clients send their raw data to the server to run the deep learning model and send back the results. One standing challenge in this setting is to ensure the privacy of the clients' sensitive data. Oblivious inference is the task of running the neural network on the client's input without disclosing the input or the result to the server. This paper introduces XONN, a novel end-to-end framework based on Yao's Garbled Circuits (GC) protocol, that provides a paradigm shift in the conceptual and practical realization of oblivious inference. In XONN, the costly matrix-multiplication operations of the deep learning model are replaced with XNOR operations that are essentially free in GC. We further provide a novel algorithm that customizes the neural network such that the runtime of the GC protocol is minimized without sacrificing the inference accuracy. We design a user-friendly high-level API for XONN, allowing expression of the deep learning model architecture in an unprecedented level of abstraction. Extensive proof-of-concept evaluation on various neural network architectures demonstrates that XONN outperforms prior art such as Gazelle (USENIX Security'18) by up to 7x, MiniONN (ACM CCS'17) by 93x, and SecureML (IEEE S&P'17) by 37x. State-of-the-art frameworks require one round of interaction between the client and the server for each layer of the neural network, whereas, XONN requires a constant round of interactions for any number of layers in the model. XONN is first to perform oblivious inference on Fitnet architectures with up to 21 layers, suggesting a new level of scalability compared with state-of-the-art. Moreover, we evaluate XONN on four datasets to perform privacy-preserving medical diagnosis.Comment: To appear in USENIX Security 201

    Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications

    Get PDF
    We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs. Chameleon combines the best aspects of generic SFE protocols with the ones that are based upon additive secret sharing. In particular, the framework performs linear operations in the ring Z2l\mathbb{Z}_{2^l} using additively secret shared values and nonlinear operations using Yao's Garbled Circuits or the Goldreich-Micali-Wigderson protocol. Chameleon departs from the common assumption of additive or linear secret sharing models where three or more parties need to communicate in the online phase: the framework allows two parties with private inputs to communicate in the online phase under the assumption of a third node generating correlated randomness in an offline phase. Almost all of the heavy cryptographic operations are precomputed in an offline phase which substantially reduces the communication overhead. Chameleon is both scalable and significantly more efficient than the ABY framework (NDSS'15) it is based on. Our framework supports signed fixed-point numbers. In particular, Chameleon's vector dot product of signed fixed-point numbers improves the efficiency of mining and classification of encrypted data for algorithms based upon heavy matrix multiplications. Our evaluation of Chameleon on a 5 layer convolutional deep neural network shows 133x and 4.2x faster executions than Microsoft CryptoNets (ICML'16) and MiniONN (CCS'17), respectively

    Privacy and Robustness in Federated Learning: Attacks and Defenses

    Full text link
    As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.Comment: arXiv admin note: text overlap with arXiv:2003.02133; text overlap with arXiv:1911.11815 by other author

    The Challenges in SDN/ML Based Network Security : A Survey

    Full text link
    Machine Learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking (SDN) emerge. Sitting at the application layer and communicating with the control layer, machine learning based SDN security models exercise a huge influence on the routing/switching of the entire SDN. Compromising the models is consequently a very desirable goal. Previous surveys have been done on either adversarial machine learning or the general vulnerabilities of SDNs but not both. Through examination of the latest ML-based SDN security applications and a good look at ML/SDN specific vulnerabilities accompanied by common attack methods on ML, this paper serves as a unique survey, making a case for more secure development processes of ML-based SDN security applications.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1705.0056
    corecore