6,604 research outputs found

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Catalytic quantum error correction

    Get PDF
    We develop the theory of entanglement-assisted quantum error correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to dual-containing symplectic codes. In contrast, EAQEC codes do not require the dual-containing condition, which greatly simplifies their construction. We show how any quaternary classical code can be made into a EAQEC code. In particular, efficient modern codes, like LDPC codes, which attain the Shannon capacity, can be made into EAQEC codes attaining the hashing bound. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes which maintain a region of inherited noiseless qubits. We also give an alternative construction of EAQEC codes by making classical entanglement assisted codes coherent.Comment: 30 pages, 10 figures. Notation change: [[n,k;c]] instead of [[n,k-c;c]

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Quantum Error Correction and Fault-Tolerance

    Full text link
    I give an overview of the basic concepts behind quantum error correction and quantum fault tolerance. This includes the quantum error correction conditions, stabilizer codes, CSS codes, transversal gates, fault-tolerant error correction, and the threshold theorem.Comment: 8 pages, to appear in Encyclopaedia of Mathematical Physic

    Entanglement-assisted quantum turbo codes

    Get PDF
    An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin et al., in order to have the constituent decoders pass along only "extrinsic information" to each other rather than a posteriori probabilities as in the decoder of Poulin et al., and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.Comment: 31 pages, software for simulating EA turbo codes is available at http://code.google.com/p/ea-turbo/ and a presentation is available at http://markwilde.com/publications/10-10-EA-Turbo.ppt ; v2, revisions based on feedback from journal; v3, modification of the quantum turbo decoding algorithm that leads to improved performance over results in v2 and the results of Poulin et al. in arXiv:0712.288

    Parsing a sequence of qubits

    Full text link
    We develop a theoretical framework for frame synchronization, also known as block synchronization, in the quantum domain which makes it possible to attach classical and quantum metadata to quantum information over a noisy channel even when the information source and sink are frame-wise asynchronous. This eliminates the need of frame synchronization at the hardware level and allows for parsing qubit sequences during quantum information processing. Our framework exploits binary constant-weight codes that are self-synchronizing. Possible applications may include asynchronous quantum communication such as a self-synchronizing quantum network where one can hop into the channel at any time, catch the next coming quantum information with a label indicating the sender, and reply by routing her quantum information with control qubits for quantum switches all without assuming prior frame synchronization between users.Comment: 11 pages, 2 figures, 1 table. Final accepted version for publication in the IEEE Transactions on Information Theor

    Algebraic geometric construction of a quantum stabilizer code

    Get PDF
    The stabilizer code is the most general algebraic construction of quantum error-correcting codes proposed so far. A stabilizer code can be constructed from a self-orthogonal subspace of a symplectic space over a finite field. We propose a construction method of such a self-orthogonal space using an algebraic curve. By using the proposed method we construct an asymptotically good sequence of binary stabilizer codes. As a byproduct we improve the Ashikhmin-Litsyn-Tsfasman bound of quantum codes. The main results in this paper can be understood without knowledge of quantum mechanics.Comment: LaTeX2e, 12 pages, 1 color figure. A decoding method was added and several typographical errors were corrected in version 2. The description of the decoding problem was completely wrong in version 1. In version 1 and 2, there was a critical miscalculation in the estimation of parameters of codes, and the constructed sequence of codes turned out to be worse than existing ones. The asymptotically best sequence of quantum codes was added in version 3. Section 3.2 appeared in IEEE Transactions on Information Theory, vol. 48, no. 7, pp. 2122-2124, July 200
    • …
    corecore