138 research outputs found

    Non-Abelian Analogs of Lattice Rounding

    Full text link
    Lattice rounding in Euclidean space can be viewed as finding the nearest point in the orbit of an action by a discrete group, relative to the norm inherited from the ambient space. Using this point of view, we initiate the study of non-abelian analogs of lattice rounding involving matrix groups. In one direction, we give an algorithm for solving a normed word problem when the inputs are random products over a basis set, and give theoretical justification for its success. In another direction, we prove a general inapproximability result which essentially rules out strong approximation algorithms (i.e., whose approximation factors depend only on dimension) analogous to LLL in the general case.Comment: 30 page

    The Phase Diagram of Compact QED Coupled to a Four-Fermi Interaction

    Get PDF
    Compact lattice Quantum Electrodynamics (QED) with four species of fermions is simulated with massless quarks by using the χ\chiQED scheme of adding a four-fermi interaction to the action. Simulations directly in the chiral limit of massless quarks are done with high statistics on 848^4, and 16416^4 lattices, and the phase diagram, parameterized by the gauge and the four-fermi couplings, is mapped out. The line of monopole condensation transitions is separate from the line of chiral symmetry restoration. The simulation results indicate that the monopole condensation transition is first order while the chiral transition is second order. The challenges in determining the Universality class of the chiral transition are discussed. If the scaling region for the chiral transition is sufficiently wide, the 16416^4 simulations predict critical indices far from mean field values. We discuss a speculative scenario in which anti-screening provided by double-helix strands of monopole and anti-monopole loops are the agent that balances the screening of fermion anti-fermion pairs to produce an ultra-violet fixed point in the electric coupling.Comment: 29 pages, 8 figures and 2 table

    The Gromov width of 4-dimensional tori

    Full text link
    We show that every 4-dimensional torus with a linear symplectic form can be fully filled by one symplectic ball. If such a torus is not symplectomorphic to a product of 2-dimensional tori with equal sized factors, then it can also be fully filled by any finite collection of balls provided only that their total volume is less than that of the 4-torus with its given linear symplectic form.Comment: improved exposition, proof of Proposition 3.9 clarified, discussion of ellipsoid embeddings remove

    Non-Abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study

    Get PDF
    Abelian and non-Abelian topological phases exhibiting protected chiral edge modes are ubiquitous in the realm of the Fractional Quantum Hall (FQH) effect. Here, we investigate a spin-1 Hamiltonian on the square lattice which could, potentially, host the spin liquid analog of the (bosonic) non-Abelian Moore-Read FQH state, as suggested by Exact Diagonalisation of small clusters. Using families of fully SU(2)-spin symmetric and translationally invariant chiral Projected Entangled Pair States (PEPS), variational energy optimization is performed using infinite-PEPS methods, providing good agreement with Density Matrix Renormalisation Group (DMRG) results. A careful analysis of the bulk spin-spin and dimer-dimer correlation functions in the optimized spin liquid suggests that they exhibit long-range "gossamer tails". We argue these tails are finite-DD artifacts of the chiral PEPS, which become irrelevant when the PEPS bond dimension DD is increased. From the investigation of the entanglement spectrum, we observe sharply defined chiral edge modes following the prediction of the SU(2)2_2 Wess-Zumino-Witten theory and exhibiting a conformal field theory (CFT) central charge c=3/2c=3/2, as expected for a Moore-Read chiral spin liquid. We conclude that the PEPS formalism offers an unbiased and efficient method to investigate non-Abelian chiral spin liquids in quantum antiferromagnets.Comment: 15 pages, 16 figures - references added - small changes in title and abstrac

    Analysis of sum-of-squares relaxations for the quantum rotor model

    Full text link
    The noncommutative sum-of-squares (ncSoS) hierarchy was introduced by Navascu\'{e}s-Pironio-Ac\'{i}n as a sequence of semidefinite programming relaxations for approximating values of noncommutative polynomial optimization problems, which were originally intended to generalize quantum values of nonlocal games. Recent work has started to analyze the hierarchy for approximating ground energies of local Hamiltonians, initially through rounding algorithms which output product states for degree-2 ncSoS applied to Quantum Max-Cut. Some rounding methods are known which output entangled states, but they use degree-4 ncSoS. Based on this, Hwang-Neeman-Parekh-Thompson-Wright conjectured that degree-2 ncSoS cannot beat product state approximations for Quantum Max-Cut and gave a partial proof relying on a conjectural generalization of Borrell's inequality. In this work we consider a family of Hamiltonians (called the quantum rotor model in condensed matter literature or lattice O(k)O(k) vector model in quantum field theory) with infinite-dimensional local Hilbert space L2(Sk−1)L^{2}(S^{k - 1}), and show that a degree-2 ncSoS relaxation approximates the ground state energy better than any product state.Comment: 28 pages, submitted to QIP 202
    • 

    corecore