2 research outputs found

    Some Results on Average-Case Hardness Within the Polynomial Hierarchy

    Get PDF
    Abstract. We prove several results about the average-case complexity of problems in the Polynomial Hierarchy (PH). We give a connection among average-case, worst-case, and non-uniform complexity of optimization problems. Specifically, we show that if P NP is hard in the worst-case then it is either hard on the average (in the sense of Levin) or it is non-uniformly hard (i.e. it does not have small circuits). Recently, Gutfreund, Shaltiel and Ta-Shma (IEEE Conference on Computational Complexity, 2005) showed an interesting worst-case to averagecase connection for languages in NP, under a notion of average-case hardness defined using uniform adversaries. We show that extending their connection to hardness against quasi-polynomial time would imply that NEXP doesn’t have polynomial-size circuits. Finally we prove an unconditional average-case hardness result. We show that for each k, there is an explicit language in P Σ2 which is hard on average for circuits of size n k.

    Non-uniform hardness for np via black-box adversaries

    No full text
    We may believe SAT does not have small Boolean circuits. But is it possible that some language with small circuits looks indistiguishable from SAT to every polynomial-time bounded adversary? We rule out this possibility. More precisely, assuming SAT does not have small circuits, we show that for every language with small circuits, there exists a probabilistic polynomial-time algorithm that makes black-box queries to, and produces, for a given input length, a Boolean formula on which differs from SAT. A key step for obtaining this result is a new proof of the main result by Gutfreund, Shaltiel, and Ta-Shma reducing average-case hardness to worst-case hardness via uniform adversaries that know the algorithm they fool. The new adversary we construct has the feature of being black-box on the algorithm it fools, so it makes sense in the non-uniform setting as well. Our proof makes use of a refined analysis of the learning algorithm of Bshouty et al.
    corecore