

Edinburgh Research Explorer

Some Results on Average-Case Hardness Within the Polynomial
Hierarchy

Citation for published version:
Pavan, A, Santhanam, R & Vinodchandran, NV 2006, Some Results on Average-Case Hardness Within the
Polynomial Hierarchy. in FSTTCS 2006: Foundations of Software Technology and Theoretical Computer
Science: 26th International Conference, Kolkata, India, December 13-15, 2006, Proceedings. vol. 4337,
Springer Berlin Heidelberg, pp. 188-199. DOI: 10.1007/11944836_19

Digital Object Identifier (DOI):
10.1007/11944836_19

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/11944836_19
https://www.research.ed.ac.uk/portal/en/publications/some-results-on-averagecase-hardness-within-the-polynomial-hierarchy(9369aa20-1212-4f91-9620-704dce76bb84).html

Some Results on Average-Case Hardness within

the Polynomial Hierarchy

A. Pavan1?, Rahul Santhanam2, and N. V. Vinodchandran3??

1 Department of Computer Science, Iowa State University
2 Department of Computer Science, Simon Fraser University

3 Department of Computer Science and Engineering, University of Nebraska-Lincon

Abstract. We prove several results about the average-case complex-
ity of problems in the Polynomial Hierarchy (PH). We give a connec-
tion among average-case, worst-case, and non-uniform complexity of op-
timization problems. Specifically, we show that if PNP is hard in the
worst-case then it is either hard on the average (in the sense of Levin)
or it is non-uniformly hard (i.e. it does not have small circuits).
Recently, Gutfreund, Shaltiel and Ta-Shma (IEEE Conference on Com-

putational Complexity, 2005) showed an interesting worst-case to average-
case connection for languages in NP, under a notion of average-case hard-
ness defined using uniform adversaries. We show that extending their
connection to hardness against quasi-polynomial time would imply that
NEXP doesn’t have polynomial-size circuits.
Finally we prove an unconditional average-case hardness result. We show
that for each k, there is an explicit language in PΣ2 which is hard on
average for circuits of size n

k.

1 Introduction

Average-case complexity is one of the central concepts in complexity theory.
There are several different reasons for studying average-case complexity. The
notion of being hard on average is fundamental to cryptography [Gol01,Gol04],
since the security of most cryptographic protocols is conditioned on the assump-
tion that certain problems such as factoring and discrete logarithm problem are
hard on average. Notions of average-case complexity also appear naturally in
the theory of pseudo-randomness [BM84,Yao82], learning theory [JS05] and the
study of heuristics for solving NP-complete problems [ART06].

Does the existence of a worst-case hard problem (say, with respect to polynomial-
size circuits) in a complexity class C imply the existence of an average-case hard
problem in the class? This question is particularly significant for the case of NP
in part because of its connections to cryptography and the theory of approxima-
tion. Answering the question positively for NP would enable us to base cryptog-

? Research supported in part by NSF grant CCF-0430807, and a Big12 Faculty Fel-
lowship.

?? Research supported inpart by NSF grant CCF-0430991.

raphy on NP-hardness rather than on the hardness of specific algebraic/number-
theoretic problems such as discrete logarithm and factoring. From the perspec-
tive of hardness of approximation, there is a recent line of work [Fei02,Ale03]
showing that average-case hardness of NP problems would imply much better
inapproximability results for certain natural problems in NP than that are cur-
rently known.

For “large enough” complexity classes such as EXP and PSPACE, it is known
that worst-case hardness implies average-case hardness. This follows from generic
hardness amplification techniques [STV01,TV02] which were developed in the
context of the theory of pseudo-randomness. However, for NP or other classes
in the polynomial-time hierarchy (PH), the techniques that work for EXP or
PSPACE are known to fail [BT03,Vio05], and the question of whether worst-
case hardness implies average-case hardness for NP and PH remains unsolved.

Our Results

We consider various notions of average-case hardness that have been defined in
the literature, and investigate the possibility of constructing languages within
the polynomial-time hierarchy that are average-case hard according to these
notions.

First, we consider Levin’s framework for average-case complexity [Lev86].
Informally, in this framework, a problem L is easy on average if for every
polynomial-time samplable distribution µ, there is some algorithm which solves
L and halts in polynomial time with high probability over the distribution µ.
It is a longstanding open problem whether the assumption that NP is easy on
average under this notion implies NP = P. It is also not known if there is an
oracle under which the implication would not follow (and hence would require a
non-relativizing technique to prove, assuming it is true). The analogous question

for ΣP
k , for any k > 1 also remains open.

We ask a weaker question: is there any non-trivial easiness assumption about
PH which in conjunction with the assumption about easiness on average imply
that NP = P? A natural assumption to consider is the assumption of non-
uniform easiness, i.e., solvability by polynomial-size circuits. Our first theorem
is along this direction.

Theorem 1.1. If NP 6= P, then NP 6⊆ P/poly or PNP is average-case hard.

An immediate corollary of this result is that if PNP 6= P, then either PNP is
non-uniformly hard or PNP is average-case hard. PNP has a natural interpretation
as the class of optimization problems whose decision versions are in NP, thus we
get that for optimization problems, worst-case hardness implies either average-
case hardness or non-uniform hardness.

The nonuniform hardness in the above theorem refers to worst-case nonuni-
form hardness. We consider the possibility of improving this to average-case
nonuniform hardness. As our second main result, we obtain the following im-
provement to the above theorem (for a more precise statement see Section 3).

Theorem 1.2. If NP 6= P, then either PNP is average-case hard, or there is a
language L in NP such that for every k there is a polynomial-time samplable
distribution µ and L is average-case hard for nk-size circuits with respect to
distribution µ.

A more restrictive notion (than the one due to Levin) of average-case easiness
that has gained prominence recently is the notion of easiness against uniform
adversaries. A language L is said to be easy against a class C of adversaries if
there is a fixed polynomial-time simulation of L such that no adversary in C
outputs an instance on which the simulation differs from L. Note that in this
setting, the simulation is independent of the adversary. This is more restrictive
than Levin’s notion, since in Levin’s setting the running time of the simulation
can depend on the running time of the adversary. A recent work of Gutfreund,
Shaltiel and Ta-Shma [GSTS05] shows that under this notion the average-case
complexity of NP is same as its worst-case complexity. In particular they show
that if every language in NP is easy against polynomial-time adversaries then in
fact NP = P. Their result has been further refined by Atserias [Ats06].

The question we ask is: how relevant is the technique of [GSTS05] for prov-
ing an average-case to worst-case connection for NP in Levin’s framework? In
particular if we allow the simulation to run for more than polynomial time (say
quasi-polynomial time) can we extend the results of Gutfreund, Shaltiel and
Ta-Shma to get an average-case to worst-case equivalence for NP? We show
that such a result would imply a groundbreaking circuit lower bound result, and
hence is unlikely to be provable using current techniques.

Theorem 1.3. If NP ⊆ quasiP−QP implies NP ⊆ QP, then NEXP 6⊆ P/poly.

We refer the reader to Section 2 for the definition of “quasiP”, which formal-
izes the notion of easiness used in [GSTS05].

Next we consider the question of whether known worst-case lower bounds
in PH can be extended to average-case lower bounds. To be specific, we ask:
which level in the polynomial-time hierarchy has languages that are average-case
hard for circuits of size nk? Kannan [Kan82] showed using a nonconstructive
argument that for any fixed k, there is a language in the second level of PH
(more precisely ΣP

2 ∩ ΠP
2) that cannot not be computed by circuits of size nk.

Since then there have been a series of attempts to prove better upper bounds
on the complexity of such a language. The current best upper bound known
[Cai01] is SP

2 , which is a subclass of ΣP
2 ∩ ΠP

2 . There has been related work on
constructing explicit languages in low levels of PH that do not have circuits of size
nk (the SP

2 upper bound is proved non-constructively). Miltersen, Vinodchandran

and Watanabe [MVW99] showed a constructive upper bound of PΣP
2 ; Cai and

Watanabe [CW03] improved the upper bound to Σ2.
Note that since an average-case to worst-case connection is not known within

PH, we cannot directly use the results above to show an average-case hardness
result. Nevertheless, we strengthen the technique of Miltersen, Vinodchandran

and Watanabe to show that for each k, there is an explicit language in PΣP
2

which cannot be approximated on significantly more than 1/2 the inputs of any
input length by circuits of size nk (refer to Section 2 for the precise definition of
(nk, nk)-hard in the following).

Theorem 1.4. For each k, there is a language Lk in PΣP
2 such that Lk is

(nk, nk)-hard.

2 Preliminaries

We say that µ = (µ1, µ2, · · ·) is an ensemble of distributions if each µn is a
distribution over Σn. We often use the word distribution instead of ensemble of
distributions. A distribution µ is p-samplable if there is a probabilistic algorithm
A such that for every x ∈ Σn

Pr[A(1n) = x] = µn(x).

We use Levin’s notion of average polynomial-time [Lev86]. In his definition of
average-polynomial time, Levin considered a distribution over Σ∗ rather than an
ensemble of distributions. However, many times it is more convenient to consider
an ensemble of distributions rather than a single distribution. Gurevich [Gur91]
and Impagliazzo [Imp95] showed that Levin’s definition can be adapted to the
case of an ensemble of distributions. We follow this adaptation.

Let µ = (µ1, µ2, · · ·) be an ensemble of distributions. We associate distribu-
tion µassoc over Σ∗, to the ensemble (µ1, µ2, · · ·), as follows: if x is a string of
length n, then

µassoc(x) =
6

π2

1

n2
µn(x).

Definition 2.1. ([Lev86]) Let L be a language and µ = (µ1, µ2, · · ·) be a distri-
bution. We say (L, µ) is in Average-P if there is a machine M that decides L
and a constant k > 1,

∑

x

(TM (x))1/k

|x|
µassoc(x) < ∞.

Remark. In Levin’s notion of Average polynomial-time, a single distribution
over Σ∗ is used instead of an ensemble of distributions as above.

We find the following observation to be useful.

Observation 2.2 Let µ be an ensemble of distributions, and let (L, µ) in Average-P.
There exists a Turing machine M that accepts L such that for every polynomial
p(.), there exists a constant l > 0, and for all but finitely many n,

Pr
x∈µn

[M(x) does not halt in nl steps] < 1/p(n).

Given a complexity class C, let DistC denote the class of distributional prob-
lems (L, µ), where L ∈ C and µ is a p-samplable ensemble. Now whether DistC ⊆
Average-P is the average-case analogue of whether C ⊆ P. Given a class C, we
say that C is easy on average if DistC ⊆ Average-P.

We can adapt Levin’s notion of average polynomial time to function classes
also. The following observation is easy to prove.

Observation 2.3 If PNP is easy on average, then PF
NP is easy on average.

We also consider the notions of average-case complexity under the uniform
distribution in nonuniform models of computation.

Definition 2.4. Let s and h be functions from N to N. A language L is called
(s, h)-hard if for every s(n)-size circuit family C = (C1, C2, · · ·)

Pr
x∈Σn

[L(x) = Cn(x)] 6 1/2 + 1/h(n).

Here x is drawn uniformly at random from Σn.

Definition 2.5. A distributional problem (L, µ) is in HSIZE(nk), if for every
polynomial p, there is a nk-size circuit family C = (C1, C2, · · ·) such that for all
but finitely many n

Pr
x∈µn

[L(x) 6= Cn(x)] 6 1/p(n).

In this paper, we also study a notion of easy on average that is different from
Levin’s notion of easy on average. This notion naturally arises in the theory of
pseudo-randomness and uniform derandomization. This notion was implicit in
the work of Impagliazzo and Wigderson [IW98]. Kabanets [Kab01] made this
explicit and defined “pseudo classes.”

Definition 2.6. ([Kab01]) Let C be a complexity class. A language L is in
pseudoP−C if there is a language L′ in C such that for every polynomial-time
machine R for all but finitely many n, R(1n) /∈ L∆L′.

Thus if a language L is in pseudoP−C, there is a simulation L′ for L and no
adversary R can find places where L′ and L differ. We obtain the class quasiP−P
(defined in [vMS05]) by allowing the adversary R to output more than one string.

Definition 2.7. A language L is in quasiP−C, if there is a language L′ in C
such that for every polynomial-time machine R for all but finitely many n, no
output of R(1n) belongs to L∆L′.

A consistent circuit for SAT is a circuit that can err only on one-side. More
formally,

Definition 2.8. We say a circuit C is consistent circuit for SAT, if C outputs
a satisfying assignment whenever it says a formula is satisfiable.

We use the following known results in our proofs.

Theorem 2.9. [BCK+96] Assume NP ⊆ P/poly. There is a ZPPNP machine
M such that M on input 1n either outputs “?” or outputs a circuit for SATn.
Probability that M outputs “?” is at most 1/2n.

Theorem 2.10. [FPS03] For every k, there is a ZPPNP algorithm M such that
if SAT does not have nk+2-size circuits at length n then M on input 1n either
outputs “?” or outputs a list of formulas φ1, φ2, · · · , φm, m 6 n2k, such that

– Pr[M(1n) =?] 6 1/2n

– If M(1n) outputs φ1, · · ·φm, then for every nk-size consistent circuit C, there
exists i, 1 6 i 6 m such that C(φi) 6= SAT(φi).

3 Easiness on Average versus Nonuniform Easiness

In this section we show results that connect the worst-case, average-case, and
non-uniform hardness of the class PNP.

Theorem 1.1 If P 6= NP, then at least one of the following statements is true.

– PNP is not easy on average.
– NP is not in P/poly.

Proof. Assume that NP is in P/poly and PNP is easy on average. Since NP is in
P/poly, by Theorem 2.9 there is a ZPPNP machine M that on input 1n outputs
a circuit for SATn with high probability. Assume that M(1n) needs nk random
bits. Define a function f as follows:

f(1n, r) = M(1n, r).

where |r| = nk, and M(1n, r) is the output of M when it is given r as random
seed. Clearly, f ∈ PF

NP. Since PNP is easy on average, by Observation 2.3,
for every p-samplable distribution µ, (f, µ) can be computed in polynomial-
time on average. Consider the following distribution µ = (µ1, µn, · · ·), where µn

randomly and uniformly picks a string r of length nk and outputs 〈1n, r〉.
Let N be a machine that computes f in average polynomial time with respect

to µ. By Observation 2.2, there exists l > 0 such that

Prr[N(1n, r) does not halt in nl steps] 6 1/n2.

Since N computes f
Prr[N(1n, r) =?] 6 1/2n.

Thus if we randomly pick r, probability that N(1n, r) either takes more than
nl time or outputs “?” is at most 1/n. Thus if we randomly pick r and stop
the computation of N(1n, r) after nl steps, then with very high probability it
outputs a circuit for SATn. This gives a probabilistic polynomial-time algorithm
that can compute circuits for SAT.

Thus SAT ∈ BPP and so NP ⊆ BPP. Buhrman, Fortnow and Pavan [BFP05]
showed that if NP is easy on average, then BPP = P. Thus NP = P.

This theorem has the following interesting corollary.

Corollary 3.1. If PNP is hard in the worst-case, then either it is non-uniform
hard or average-case hard.

Theorem 1.1 says that if NP does not equal to P, then either PNP is hard
on average or there is a language in NP that is not in SIZE(nk) for every k > 1.
This language in NP is worst-case hard in the non-uniform model. Can we make
this language to be average-case hard in the non-uniform model? We show the
following:

Theorem 1.2 If P 6= NP, then at least one of the following statements is true.

– PNP is not easy on average.
– There is a language L in NP such that for every k there is a p-samplable

distribution µ such that (L, µ) /∈ HSIZE(nk).

Remark. In this result, the distribution µ depends on the constant k. Making
the distribution independent of k yields the much sought average-case to worst-
case connection for PNP.

The theorem follows from the following two Lemmas. We omit the proofs due
to lack of space. Proof of these Lemma 3.2 makes crucial use of Theorem 2.10.

Lemma 3.2. If P 6= NP, then at least one of the following statements is true.

– PNP is not easy on average.
– For every k there is a p-samplable distribution µ, and infinitely many n such

that for every nk-size consistent circuit fancily C = (C1, C2, · · ·) for SAT

Pr
x∈µn

[Cn(x) 6= SAT(x)] > 1/n4k.

Lemma 3.3. Assume that the following statement holds: For every k there is
a p-samplable distribution µ, and infinitely many n such that for every nk-size
consistent circuit family C = (C1, C2, · · ·) for SAT,

Pr
x∈µn

[Cn(x) 6= SAT(x)] > 1/n4k.

Then, there is a language L in NP such that for every k, there is a p-samplable
distribution µ and

(L, µ) /∈ HSIZE(nk).

4 On the Difficulty of Showing Easiness on Average

Implies Easiness in the Worst Case

A recent result by Gutfreund, Shaltiel and Ta-Shma [GSTS05] on worst-case
to average-case reductions for NP problems states that if there is a simulation
of SAT in polynomial time which fools all polynomial-time adversaries, then
NP = P.

Theorem 4.1. If NP ⊆ quasiP−P, then NP = P.

Theorem 4.1 can be interpreted as follows. If SAT is not in polynomial time,
then for any polynomial-time algorithm A purporting to solve SAT, there is
an adversary—a polynomial time procedure—that for each n produces a small
list of candidate counter-examples of size n. Namely the adversary outputs a
list of formulae such that there is at least one formula φ in the list for which
A(φ) 6= SAT (φ). In fact, the proof of Theorem 4.1 gives an upper bound of 3 on
the size of the list.

It is crucial to the proof of Theorem 4.1 that the adversary has more re-
sources than the simulating class. Indeed, the proof of Theorem 4.1 proceeds
via construction of an adversary which simulates an algorithm A purporting to
solve SAT. On the other hand, showing an average-case to worst-case connection
for NP under Levin’s notion would mean that if NP 6= P, then there is a dis-
tribution µ such that (SAT, µ) is not solved on average by any polynomial-time
algorithm, where the algorithm may take more time than is required to sample
from µ. Thus intuitively, if the method of [GSTS05] is to be applicable to showing
an average-case to worst-case connection for NP, it should be possible to extend
Theorem 4.1 to a setting where the simulating class has more power than the
adversary. We show that this is unlikely using current techniques (indeed, using
relativizing techniques) since NEXP 6⊆ P/poly is a consequence.

We will actually show that NEXP 6= MA, which implies the circuit lower
bound by the following result of Impagliazzo, Kabanets and Wigderson:

Theorem 4.2. [IKW02] NEXP 6= MA if and only if NEXP 6⊆ P/poly.

We consider two cases, the first where NP is somewhat easy in the worst
case, and the second where NP is somewhat hard according to the notion of
hardness in [GSTS05]. In both cases, we show that MA 6= NEXP follows. Thus
MA 6= NEXP would follow from an average-case to worst-case connection. In
the first case, we use standard techniques, and in the second case, we use the
“easy witness” method of Kabanets [Kab01] and Impagliazzo, Kabanets and
Wigderson [IKW02]. Let QP denote the class of languages that can be decided in
deterministic quasi-Polynomial time, and NQP is the nondeterministic analogue
of QP.

Lemma 4.3. If NP ⊆ QP, then MA 6= NEXP.

Proof. We will prove something even stronger, namely that MA 6= EXP.
By Lautemann’s theorem [Lau83], MA ⊆ ΣP

2 . If NP ⊆ QP, then MA ⊆ ΣP
2 =

NPNP ⊆ NPQP ⊆ NQP.
By padding, if NP ⊆ QP, then NQP = QP, and hence MA ⊆ QP. By the

hierarchy theorem for deterministic time, EXP 6⊆ QP, and hence MA 6= EXP.

Next, we show that a superpolynomial lower bound on average-case hard-
ness in the framework of [GSTS05] would also separate MA and NEXP. We
will need the optimal construction of pseudo-random generators due to Umans
[SU05,Uma02] in the proof.

Theorem 4.4. There is a function G : {0, 1}2m

× {0, 1}O(m) → {0, 1}ms

com-
putable in polynomial time such that if f is a Boolean function on m bits
which doesn’t have circuits of size m3s, then for any circuit C of size ms,
|Pry∈{0,1}ms (C(y) = 1) − Prx∈{0,1}m(C(G(f, x)) = 1)| < 1/ms

Lemma 4.5. If NP 6⊆ quasiP−QP, then MA 6= NEXP.

Proof Sketch. Fix a language L in NP. We attempt to simulate L in deterministic
time 2polylog(n) on inputs of length n as follows. For an input x of length n, we
interpret a witness for x as the truth table of a Boolean function (rounding
the witness size upwards to a power of 2). We search for witnesses describable
by small circuits, i.e., circuits of size polylog(n). If we find such a witness for
x, we accept x, otherwise we reject. Clearly, the search can be implemented
exhaustively in time 2polylog(n).

Since NP 6⊆ quasiP−QP, there is an L ∈ NP such that the simulation above
fails for L. Moreover, there is a polynomial time machine B outputting a list
of instances such that the simulation fails on at least one of the instances. We
will use the machine B to derive a simulation of MA in non-deterministic sub-
exponential time with small advice, and then use a hierarchy theorem to show
that this implies a separation of MA and NEXP.

We show that for any language L′ ∈ MA, L′ ∈ i.o.NTIME(2O(m))/O(m).
The basic idea is that the machine B can be used to derandomize a Merlin-
Arthur machine accepting L′ infinitely often, given small advice. This is because
for infinitely many input lengths n, there is at least one instance y ∈ L of length
n output by B such that none of the witnesses for y are describable by small
circuits. Thus, if we knew y, we could non-deterministically compute the truth
table of a hard function by merely guessing and verifying a witness for y. Once
we have the truth table of a hard function, we could use Theorem 4.4 to deran-
domize a polynomial-time Merlin-Arthur machine and simulate it’s computation
in NTIME(2O(m)), where m is the length of the input to the machine.

We do not know y but B does produce a small list containing y. Thus, given
a small amount of advice telling us the index of y in the list, we can determine
y. We also do not know precisely for which input lengths B produces a list
containing at least instance in L with hard witnesses. But we know that this
happens infinitely often, and we can again use a small amount of advice to point
to the right input lengths. We omit the details in this sketch.

Now assume, for the purpose of contradiction, that MA = NEXP. Since
MA ⊆ EXP ⊆ NEXP, we have that EXP = NEXP. This implies that there is
some constant c such that NE ⊆ DTIME(2nc

) (since NE has a complete lan-
guage, and a deterministic time upper bound for that complete language also
holds for any language in NE). It follows that NE/O(n) ⊆ DTIME(2nc

)/O(n).
We have that MA ⊆ i.o.NE/O(n) ⊆ i.o.DTIME(2nc

)/O(n). Since MA = EXP
by assumption, we have that EXP ⊆ i.o.DTIME(2nc

)/O(n), which is a contra-
diction to the time hierarchy theorem for deterministic time. �

Now, Theorem 1.3 follows from above two lemmas.

Theorem 1.3 . If NP ⊆ quasiP−QP implies NP ⊆ QP, then NEXP 6⊆ P/poly.

Proof. By assumption, either NP ⊆ QP or NP 6⊆ quasiP−QP. In the first case, by
Lemma 4.3, MA 6= NEXP. In the second case also, by Lemma 4.5, MA 6= NEXP.
Thus, in either case, MA 6= NEXP, which implies NEXP 6⊆ P/poly by Theorem
4.2.

5 Average-case circuit lower bounds within PH

Kannan [Kan82] showed that for every k, there exist functions in the polynomial-
time hierarchy for which no nk-size circuits exist. However, this is a worst-case
hardness result. Are there functions in PH that are hard on average for nk-size
circuits?

We show how to find such functions in the third level of the PH.

Theorem 5.1. For any k and h, there is a language L ∈ PΣP

2 that is (nk, nh)
hard.

We first start with a function g : {0, 1}2(k+h) log n → {0, 1} that is (nk, nh)
hard and then randomly pad the input to get a function f on n bits with the
same hardness.

Theorem 5.2. There is a function g : {0, 1}2(k+h) log n → {0, 1} that is (nk, nh)

hard. Moreover, there is an FPΣP

2 procedure that outputs the lexicographically
first such function.

Proof. Consider a random function from {0, 1}2(k+h) log n → {0, 1} viewed as a
Boolean string of length n2(k+h). Fix a circuit C of size nk. The expected agree-

ment between C and g is n2(k+h)

2 . Thus using Chernoff’s bounds, Pr((C(x) =

g(x)) > (1 + δ)n2(k+h)

2) 6 e
−δ

2
n
2(k+h)

6 . For δ = 1
nh , this probability is < 2−n2k

.

There are at most 2nk+1

circuits of size 6 nk. Thus by union bound there exists
a function g : {0, 1}2(k+h) log n → {0, 1} that is (nk, nh) hard.

Since the function is on O(log n) size inputs, it is easy to see that an FPΣP

2

procedure can output the lexicographically first such function.

Proof. (Of Theorem 5.1). Consider the function f : {0, 1}n → {0, 1} defined as
follows. Let x = yz where y is the first 2(k+h) log n bits of x. Define f(x) = g(y)
where g is the hard function from the above theorem. Claim is that the function
f is (nk, ns) hard. For a contradiction, let D be a circuit of size at most nk so that
Prx((D(x) = f(x)) > 1

2 + 1
nh). That is, Pryz((D(yz) = f(yz)) > 1

2 + 1
nh). Then

by an averaging argument there is a z so that Pry((D(yz) = f(yz)) > 1
2 + 1

nh).

Thus by hardwiring this z into D , we get a circuit Dz of size 6 nk so that
Pry((Dz(y) = g(y)) > 1

2 + 1
nh). This contradicts the hardness of g.

Theorem 1.4 is a special case of Theorem 5.1.

Acknowledgements

We thank the friendly staff of Iowa Western Community College, Atlantic, IA
for providing facilities where a part of this work was done.

References

[Ale03] M. Alekhnovich. More on average case vs approximation complexity. In
Proceedings of 44th IEEE Symposium on Foundations of Computer Science,
pages 298–307, 2003.

[ART06] D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of
random constraint satisfaction problems. In Proceedings of Symposium on

Theory of Computing, page to appear, 2006.
[Ats06] A. Atserias. Non-uniform hardness for NP via black-box adversaries. In

Proceedings of Conference on Computational Complexity, page to appear,
2006.

[BCK+96] N. Bshouty, R. Cleve, S. Kannan, R. Gavalda, and C. Tamon. Oracles
and queries that are sufficient for exact learning. Journal of Computer and

System Sciences, 52:421–433, 1996.

[BFP05] H. Buhrman, L. Fortnow, and A. Pavan. Some results on derandomization.
Theory of Computing Systems, 38(2):211–227, 2005.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput., 13:850–864, 1984.

[BT03] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for
np problems. In Proceedings of the 44th IEEE Conference on Foundations

of Computer Science, pages 308–317, 2003.
[Cai01] J. Cai. S

p
2 ⊆ ZPPNP. In Proceedings of the 42nd Annual Symposium on

Foundations of Computer Science, 2001, pages 620–629, 2001.
[CW03] J. Cai and O. Watanabe. On proving circuit lower bounds against the

polynomial hierarchy: Positive and negative results. In Proceedings of Ninth

Annual International Conference on Combinatorics and Computing, pages
202–211, 2003.

[Fei02] Uriel Feige. Relations between average case complexity and approximation
complexity. In Proceedings of 35th Annual ACM Symposium on Theory of

Computing, pages 534–543, 2002.

[FPS03] L. Fortnow, A. Pavan, and S. Sengupta. Proving SAT does not have small
circuits with an application to the two queries problem. In Proceedings of

the 18th IEEE Conference on Computational Complexity, pages 347–350,
2003.

[Gol01] O. Goldreich. Foundations of Cryptography - Volume 1. Cambridge Univer-
sity Press, 2001.

[Gol04] O. Goldreich. Foundations of Cryptography - Volume 2. Cambridge Univer-
sity Press, 2004.

[GSTS05] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. If NP languages are hard on the
worst-case then it is easy to find their hard instances. In IEEE Conference

on Computational Complexity, pages 243–257, 2005.

[Gur91] Y. Gurevich. Average case completeness. Journal of Computer and System

Sciences, 42:346–398, 1991.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy wit-
ness: Exponential time vs Probabilistic polynomial time. Journal of Com-

puter and System Sciences, 65:672–694, 2002.
[Imp95] R. Impagliazzo. A personal view of average-case complexity theory. In Pro-

ceedings of the 10th Annual Conference on Structure in Complexity Theory,
pages 134–147. IEEE Computer Society Press, 1995.

[IW98] R. Impagliazzo and A. Wigderson. Randomness vs. time: de-randomization
under a uniform assumption. In 39th Annual Symposium on Foundations of

Computer Science: proceedings, 1998, pages 734–743, 1998.
[JS05] J. Jackson and R. Servedio. On learning random DNF formulas under the

uniform distribution. In Proceedings of 9th International Workshop on Ran-

domness and Computation, pages 342–353, 2005.
[Kab01] V. Kabanets. Easiness assumptions and hardness tests: trading time for zero

error. Journal of Computer and System Sciences, 63(2):236–252, 2001.
[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.

Information and Control, 55:40–56, 1982.
[Lau83] C. Lautemann. BPP and the polynomial hierarchy. Information Processing

Letters, 17:215–217, November 1983.
[Lev86] L. Levin. Average case complete problems. SIAM Journal of Computing,

15:285–286, 1986.
[MVW99] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. Super-polyomial

versus half-exponential circuit size in the exponential hierarchy. In Proceed-

ings of Fifth Annual International Conference on Computing and Combina-

torics, pages 210–220, 1999.
[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without

the XOR lemma. JCSS: Journal of Computer and System Sciences, 62,
2001.

[SU05] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the ACM, 52, 2005.

[TV02] L. Trevisan and S. Vadhan. Pseudorandomness and average-case complex-
ity via uniform reductions. In Annual IEEE Conference on Computational

Complexity, volume 17, 2002.
[Uma02] C. Umans. Pseudo-random generators for all hardnesses. In Symposium on

Theory of Computing, pages 627–634, 2002.
[Vio05] E. Viola. On constructing parallel pseudorandom generators from one-way

functions. In Proceedings of the 20th IEEE Conference on Computational

Complexity, 2005.
[vMS05] D. van Melkebeek and R. Santhanam. Holographic proofs and derandom-

ization. SIAM Journal on Computing, 35(1):59–90, 2005.
[Yao82] A. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE

Symposium on Foundations of Computer Science, pages 80–91, 1982.

