2 research outputs found

    Non-Stationary Platform Inverse Synthetic Aperture Radar Maneuvering Target Imaging Based on Phase Retrieval

    Get PDF
    As a powerful signal processing tool for imaging moving targets, placing radar on a non-stationary platform (such as an aerostat) is a future direction of Inverse Synthetic Aperture Radar (ISAR) systems. However, more phase errors are introduced into the received signal due to the instability of the radar platform, making it difficult for popular algorithms to accurately perform motion compensation, which leads to severe effects in the resultant ISAR images. Moreover, maneuvering targets may have complex motion whose motion parameters are unknown to radar systems. To overcome the issue of non-stationary platform ISAR autofocus imaging, a high-resolution imaging method based on the phase retrieval principle is proposed in this paper. Firstly, based on the spatial geometric and echo models of the ISAR maneuvering target, we can deduce that the radial motion of the radar platform or the vibration does not affect the modulus of the ISAR echo signal, which provides a theoretical basis for the phase recovery theory for the ISAR imaging. Then, we propose an oversampling smoothness (OSS) phase retrieval algorithm with prior information, namely, the phase of the blurred image obtained by the classical imaging algorithm replaces the initial random phase in the original OSS algorithm. In addition, the size of the support domain of the OSS algorithm is set with respect to the blurred target image. Experimental simulation shows that compared with classical imaging methods, the proposed method can obtain the resultant motion-compensated ISAR image without estimating the radar platform and maneuvering target motion parameters, wherein the fictitious target is perfectly focused

    Development of techniques and technology for full polarimetric radar applied to concealed weapons detection

    Get PDF
    One of the biggest threats to modern society is the increasing use by criminals and terrorists of concealed weapons and person born improvised explosive devices (PBIED). Current highly mature security screening technologies using x-ray and metal detectors have limited deployment scenarios based on health and safety issues and operational range, respectively. Given that most clothing is greater than 90% transmissive in the microwave region, this spectral band is ideal for screening people for concealed threats. However, due to diffraction, imagery to screen subjects is limited due to the small number of pixels. In this regime, the exploitation of microwave polarimetry from the field of remote sensing has particular benefits, as it extracts maximum information content from a single pixel. The work presented in this thesis has assembled a full polarimetric frequency stepped radar from a vector network analyser (VNA), a linear orthogonal mode transducer (OMT) of the turnstile type and a conical corrugated horn antenna. The system’s characterisation by antenna pattern measurements, the measuring of canonical targets of the plane, dihedral, dipole and helical reflectors showed the system to be capable of making localised Sinclair matrix measurements of targets at ranges of two to three metres. The work presents a calibration procedure comprising the VNA’s internal calibration and an external calibration to compensate for dispersion and cross-polar leakage of system components. Static target measurements (canonical and various surrogate items) were analysed, using range gating for clutter rejection. Calibrated Sinclair parameter measurements compared with those from simple simulations, all software being programmed in Matlab. Measurements of moving targets revealed the phenomenon of speckle, this introducing rapid changes in the Sinclair Parameters. Data analysis performed using the coherency matrix and the Cloude/Pottier decomposition minimised the effects of speckle in the processed data. Measurements show movement from particularly rough surfaces increased the parameter of the Cloude/Pottier entropy, the level of this being directly linked to the degree of speckle. Application of the Huynen polarisation fork technique (a type of decomposition) has proved to aid the identification of static and moving targets. A detailed analysis of iii the Huynen fork responses is made of the human torso on its own, weapons on their own and then weapons positioned against the human torso. Responses of nondangerous objects such as keys and a smartphone are additionally presented
    corecore