3,849 research outputs found

    A Novel Network NOMA Scheme for Downlink Coordinated Three-Point Systems

    Full text link
    In this paper, we propose a network non-orthogonal multiple access (N-NOMA) technique for the downlink coordinated multipoint (CoMP) communication scenario of a cellular network, with randomly deployed users. In the considered N-NOMA scheme, superposition coding (SC) is employed to serve cell-edge users as well as users close to base stations (BSs) simultaneously, and distributed analog beamforming by the BSs to meet the cell-edge user's quality of service (QoS) requirements. The combination of SC and distributed analog beamforming significantly complicates the expressions for the signal-to-interference-plus-noise ratio (SINR) at the reveiver, which makes the performance analysis particularly challenging. However, by using rational approximations, insightful analytical results are obtained in order to characterize the outage performance of the considered N-NOMA scheme. Computer simulation results are provided to show the superior performance of the proposed scheme as well as to demonstrate the accuracy of the analytical results

    Advanced Coordinated Beamforming for the Downlink of Future LTE Cellular Networks

    Full text link
    Modern cellular networks in traditional frequency bands are notoriously interference-limited especially in urban areas, where base stations are deployed in close proximity to one another. The latest releases of Long Term Evolution (LTE) incorporate features for coordinating downlink transmissions as an efficient means of managing interference. Recent field trial results and theoretical studies of the performance of joint transmission (JT) coordinated multi-point (CoMP) schemes revealed, however, that their gains are not as high as initially expected, despite the large coordination overhead. These schemes are known to be very sensitive to defects in synchronization or information exchange between coordinating bases stations as well as uncoordinated interference. In this article, we review recent advanced coordinated beamforming (CB) schemes as alternatives, requiring less overhead than JT CoMP while achieving good performance in realistic conditions. By stipulating that, in certain LTE scenarios of increasing interest, uncoordinated interference constitutes a major factor in the performance of CoMP techniques at large, we hereby assess the resilience of the state-of-the-art CB to uncoordinated interference. We also describe how these techniques can leverage the latest specifications of current cellular networks, and how they may perform when we consider standardized feedback and coordination. This allows us to identify some key roadblocks and research directions to address as LTE evolves towards the future of mobile communications.Comment: 16 pages, 6 figures, accepted to IEEE Communications Magazin

    5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

    Full text link
    LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky procedures necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.Comment: Submitted to Workshop on Mobile and Wireless Communication Systems for 2020 and beyond (at IEEE VTC 2013, Spring
    corecore