14,075 research outputs found

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization

    Confident Kernel Sparse Coding and Dictionary Learning

    Full text link
    In recent years, kernel-based sparse coding (K-SRC) has received particular attention due to its efficient representation of nonlinear data structures in the feature space. Nevertheless, the existing K-SRC methods suffer from the lack of consistency between their training and test optimization frameworks. In this work, we propose a novel confident K-SRC and dictionary learning algorithm (CKSC) which focuses on the discriminative reconstruction of the data based on its representation in the kernel space. CKSC focuses on reconstructing each data sample via weighted contributions which are confident in its corresponding class of data. We employ novel discriminative terms to apply this scheme to both training and test frameworks in our algorithm. This specific design increases the consistency of these optimization frameworks and improves the discriminative performance in the recall phase. In addition, CKSC directly employs the supervised information in its dictionary learning framework to enhance the discriminative structure of the dictionary. For empirical evaluations, we implement our CKSC algorithm on multivariate time-series benchmarks such as DynTex++ and UTKinect. Our claims regarding the superior performance of the proposed algorithm are justified throughout comparing its classification results to the state-of-the-art K-SRC algorithms.Comment: 10 pages, ICDM 2018 conferenc

    Linear Spatial Pyramid Matching Using Non-convex and non-negative Sparse Coding for Image Classification

    Full text link
    Recently sparse coding have been highly successful in image classification mainly due to its capability of incorporating the sparsity of image representation. In this paper, we propose an improved sparse coding model based on linear spatial pyramid matching(SPM) and Scale Invariant Feature Transform (SIFT ) descriptors. The novelty is the simultaneous non-convex and non-negative characters added to the sparse coding model. Our numerical experiments show that the improved approach using non-convex and non-negative sparse coding is superior than the original ScSPM[1] on several typical databases

    Fast and Robust Archetypal Analysis for Representation Learning

    Get PDF
    We revisit a pioneer unsupervised learning technique called archetypal analysis, which is related to successful data analysis methods such as sparse coding and non-negative matrix factorization. Since it was proposed, archetypal analysis did not gain a lot of popularity even though it produces more interpretable models than other alternatives. Because no efficient implementation has ever been made publicly available, its application to important scientific problems may have been severely limited. Our goal is to bring back into favour archetypal analysis. We propose a fast optimization scheme using an active-set strategy, and provide an efficient open-source implementation interfaced with Matlab, R, and Python. Then, we demonstrate the usefulness of archetypal analysis for computer vision tasks, such as codebook learning, signal classification, and large image collection visualization
    corecore