211 research outputs found

    Benchmarking least squares support vector machine classifiers.

    Get PDF
    In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a ( convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set of equations in the dual space. While the SVM classifier has a large margin interpretation, the LS-SVM formulation is related in this paper to a ridge regression approach for classification with binary targets and to Fisher's linear discriminant analysis in the feature space. Multiclass categorization problems are represented by a set of binary classifiers using different output coding schemes. While regularization is used to control the effective number of parameters of the LS-SVM classifier, the sparseness property of SVMs is lost due to the choice of the 2-norm. Sparseness can be imposed in a second stage by gradually pruning the support value spectrum and optimizing the hyperparameters during the sparse approximation procedure. In this paper, twenty public domain benchmark datasets are used to evaluate the test set performance of LS-SVM classifiers with linear, polynomial and radial basis function (RBF) kernels. Both the SVM and LS-SVM classifier with RBF kernel in combination with standard cross-validation procedures for hyperparameter selection achieve comparable test set performances. These SVM and LS-SVM performances are consistently very good when compared to a variety of methods described in the literature including decision tree based algorithms, statistical algorithms and instance based learning methods. We show on ten UCI datasets that the LS-SVM sparse approximation procedure can be successfully applied.least squares support vector machines; multiclass support vector machines; sparse approximation; discriminant-analysis; sparse approximation; learning algorithms; classification; framework; kernels; time; SISTA;

    Stacking-Based Deep Neural Network: Deep Analytic Network for Pattern Classification

    Full text link
    Stacking-based deep neural network (S-DNN) is aggregated with pluralities of basic learning modules, one after another, to synthesize a deep neural network (DNN) alternative for pattern classification. Contrary to the DNNs trained end to end by backpropagation (BP), each S-DNN layer, i.e., a self-learnable module, is to be trained decisively and independently without BP intervention. In this paper, a ridge regression-based S-DNN, dubbed deep analytic network (DAN), along with its kernelization (K-DAN), are devised for multilayer feature re-learning from the pre-extracted baseline features and the structured features. Our theoretical formulation demonstrates that DAN/K-DAN re-learn by perturbing the intra/inter-class variations, apart from diminishing the prediction errors. We scrutinize the DAN/K-DAN performance for pattern classification on datasets of varying domains - faces, handwritten digits, generic objects, to name a few. Unlike the typical BP-optimized DNNs to be trained from gigantic datasets by GPU, we disclose that DAN/K-DAN are trainable using only CPU even for small-scale training sets. Our experimental results disclose that DAN/K-DAN outperform the present S-DNNs and also the BP-trained DNNs, including multiplayer perceptron, deep belief network, etc., without data augmentation applied.Comment: 14 pages, 7 figures, 11 table

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data

    Get PDF
    The development of molecular techniques for genetic analysis has enabled great advances in cereal breeding. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups previously established, still remains unsolved. In this work we evaluate the performance of several state-of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a valuable complement to traditional breeding programs.Fil: Ornella, Leonardo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Tapia, Elizabeth. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentin

    A Case of Exponential Convergence Rates for SVM

    Full text link
    Classification is often the first problem described in introductory machine learning classes. Generalization guarantees of classification have historically been offered by Vapnik-Chervonenkis theory. Yet those guarantees are based on intractable algorithms, which has led to the theory of surrogate methods in classification. Guarantees offered by surrogate methods are based on calibration inequalities, which have been shown to be highly sub-optimal under some margin conditions, failing short to capture exponential convergence phenomena. Those "super" fast rates are becoming to be well understood for smooth surrogates, but the picture remains blurry for non-smooth losses such as the hinge loss, associated with the renowned support vector machines. In this paper, we present a simple mechanism to obtain fast convergence rates and we investigate its usage for SVM. In particular, we show that SVM can exhibit exponential convergence rates even without assuming the hard Tsybakov margin condition.Comment: 16 pages, 6 figure
    corecore