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Abstract

The development of molecular techniques for genetic analysis has enabled
great advances in cereal breeding. However, their usefulness in hybrid breed-
ing, particularly in assigning new lines to heterotic groups previously estab-
lished, still remains unsolved. In this work we evaluate the performance of
several state-of-art multiclass classifiers onto three molecular marker datasets
representing a broad spectrum of maize heterotic patterns. Even though re-
sults are variable, they suggest supervised learning algorithms as a valuable
complement to traditional breeding programs.
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1. Introduction1

Since the first maize hybrid was bred and produced in USA, hybrid breed-2

ing has become one of the primary goals in any maize breeding programs3

(Hallauer and Miranda, 1988); however, varietal development has become4

more competitive and costly. For example, in USA, development of one va-5

riety of maize or soybean requires 0.5− 7.0 million dollar. The lifetime of a6

variety is usually 3-6 years before it succumbs to the challenges of the pro-7

duction environment (biotic and abiotic stress) and demands of consumers8

(Lee, 1998). Consequently, grouping parent lines into heterotic groups is9

fundamental in both private and public breeding programs in order to re-10

duce the number of crosses, and therefore field tests, necessary to evaluate11
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potential high-yielding hybrids (Hallauer and Miranda, 1988). By heterotic12

groups we mean a population of genotypes that, when crossed with indi-13

viduals from another heterotic group or population, consistently outperform14

intra-population crosses (Hallauer and Miranda, 1988). Molecular markers,15

such as RAPD (random amplified polymorphic DNA), AFLP (amplified frag-16

ment length polymorphism) and microsatellites, among others, have facili-17

tated the development of new varieties by reducing the time required for the18

detection of specific traits in progeny plants and the identification of disease19

resistance genes (Korzun, 2003). Even though they have been proposed to20

assign new inbred to heterotic groups previously established (dos Santos Dias21

et al., 2004; Xia et al., 2004), their usefulness in this task still remains un-22

certain (dos Santos Dias et al., 2004). Machine-learning techniques, such as23

decision trees and artificial neural networks, are increasingly used in agricul-24

ture to deal with classification, prediction, and modeling problems (Kirch-25

ner et al., 2004; Mitchell et al., 1996); however, we found no reports about26

machine learning algorithms (Kotsiantis, 2007; Witten and Frank, 2005) and27

heterotic group assignment using molecular marker data. We conjecture that28

traditional distance-based methods (Reif et al., 2005) currently available for29

assigning new inbreds to heterotic groups in corn do not capture the possi-30

ble non-linear relation between parental data and progeny performance (dos31

Santos Dias et al., 2004; Springer and Stupar, 2007) and that such type of32

non linearity may be easily captured by supervised machine learning models.33

In this paper, we evaluate the performance of several state-of-art super-34

vised learning algorithms on molecular marker data for heterotic assignation,35

and delineate perspectives for further research.36

2. Multiclass Classifiers37

The goal of supervised learning is to build a concise model of the distri-38

bution of class labels in terms of predictor features, the resulting classifier39

is then used to assign class labels to the testing instances where the values40

of the predictor features are known, but the value of the class label is un-41

known (Kotsiantis, 2007). There are numerous learning algorithms reported42

in the bibliography (Kotsiantis, 2007; Witten and Frank, 2005), for this intro-43

ductory work we considered four well-known supervised learning algorithms44

implemented in Weka workbench (Hall et al., 2009): i) Naive Bayes (John45

and Langley, 1995), ii) Bayes Net (Friedman et al., 1997), iii) Simple Logistic46
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(Landwehr et al., 2005) and iv) Support Vector Machines (SVMs) with linear47

and radial basis function kernels (Burges, 1998).48

2.1. Naive Bayes49

NB learns from training data the conditional probability of each attribute50

Ai given the class label C. Classification is then done by applying Bayes rule51

to compute the probability of C given the particular instance of A1, ..., An;52

and then predicting the class with the highest posterior probability. This53

computation is rendered feasible by making a strong independence assump-54

tion: all the attributes Ai are conditionally independent given the value of55

the class C. Independence means probabilistic independence , i.e, A is inde-56

pendent of B given C whenever P (A|B,C) = P (A|C) for all possible values57

of A, B and C, wheneverP (C) > 0 (Friedman et al., 1997). Even though the58

above assumption is clearly unrealistic, its predictive performance is compet-59

itive with state-of-the-art classifiers (Friedman et al., 1997; Kohonen et al.,60

2008).61

2.2. Bayes Net62

A Bayesian network is an annotated directed acyclic graph that encodes63

a joint probability distribution over a set of random variables U (Friedman64

et al., 1997). The graph G encodes independence assumptions: each variable65

Xi is independent of its nondescendants given its parents in G(Πxi
):66

p(x1, x2, · · · , xn) =
n∏
i=1

p(xi|Πxi
) (1)

To use a BN as classifier, a search algorithm find a network B,67

PB(A1, A..., An, C), that best matches a training set D according to some68

scoring function (Cooper and Herskovits, 1992; Friedman et al., 1997). Once69

a network is learned, B returns the label c that maximizes the posterior70

probability PB(c/a1, ..., an) (Cooper and Herskovits, 1992; Friedman et al.,71

1997). Naive Bayes can be considered a Bayes Net in where the structure of72

the graph is constrained (Friedman et al., 1997).73

2.3. Simple Logistic74

Landwehr et al. (2005) proposed Logistic Model Trees or LMT, trees that75

contain linear logistic regression functions at the leaves. In that work they76

reported that at low number of training instances (n ≤ 100), Simple Logistic77
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(SL), a logistic model tree of size one, performs as well as more complex LMT78

and better than decision tree C4.5 (Quinlan, 1993), with less computational79

requirements (Landwehr et al., 2005).80

Linear logistic regression models the posterior class probabilities Pr(C =81

c|X = x) for the J classes via functions linear in x and ensures that they82

sum to one and remain in [0, 1] (Sumner et al., 2005). The model is:83

P (C = c|X = x) =
eFc(x)∑C
k=1 e

Fk(x)
(2)

where Fj(x) =
∑M

m=1 fmj(x) = βTj · x. Estimates of βTj are obtained84

by numeric optimization algorithms that approach the maximum likelihood85

solution iteratively (Sumner et al., 2005). In Simple Logistic such iterative86

method is the LogitBoost algorithm (Landwehr et al., 2005). In each it-87

eration, it fits a least-squares regressor to a weighted version of the input88

data with a transformed target variable. y∗ij are the binary pseudo-response89

variables which indicate group membership of an observation like this:90

y∗ij =

{
1 if yi = j

0 if yi 6= j
(3)

By constraining fmj to be a linear function of only the attribute that91

results in the lowest squared error, we lead to an algorithm that performs92

automatic attribute selection (Sumner et al., 2005); also, by using cross-93

validation (5 folds) to determine the best number of LogitBoost iterations,94

only those attributes that improve the classification performance on unseen95

instances are included (Landwehr et al., 2005; Sumner et al., 2005).96

2.4. Support Vector Machines97

The support vector machine (SVM) algorithm is based on the statistical98

learning theory and the Vapnik-Chervonenkis (VC) dimension introduced by99

Vladimir Vapnik and Alexey Chervonenkis(Cortes and Vapnik, 1995); the100

underlying idea is to calculate a maximal margin hyperplane (the decision101

function) separating two classes of the data (Cortes and Vapnik, 1995), such102

decision function is fully specified by a usually small subset of the data (the103

support vectors) which defines the position of the separator. New samples104

are classified according to the side of the hyperplane they belong to (Cortes105

and Vapnik, 1995; Devos et al., 2009).106
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In the case of non separable data, the “ideal boundary” must be adapted107

to tolerate errors for some objects i:108

minimize
1

2
‖w‖2 + C

n∑
i=1

ζi (4)

under the constraints ζi ≥ 0, ζi + yi(w · xi + b) − 1 ≥ 0 , w and b109

are respectively the normal vector and the bias of the hyperplane, and each110

ζi corresponds to the distance between the object i and the corresponding111

margin hyperplane (Devos et al., 2009).112

The parameter C is a regularization meta-parameter, when C is small,113

margin maximization is emphasized whereas when C is large, the error min-114

imization is predominant (Cortes and Vapnik, 1995; Devos et al., 2009).115

To learn non-linearly separable functions, data are implicitly mapped116

to a higher dimensional space by means of mercer kernels which can be117

decomposed into a dot product, K(xi,xj) = φ(xi) · φ(xj) (Burges, 1998).118

Examples of kernels are the linear kernel K = (xi · xj − 1)p=1 and the radial119

basis function kernel K = e−γ(xi−xj)
2
.120

2.5. ECOC codes121

SVMs have particular high generalization abilities and have become very122

popular in the recent years; nevertheless, they are inherently binary classifiers123

and a combination scheme is necessary to extend SVMs for problems with124

more than two classes (Rifkin and Klautau, 2004). In this work, the One125

Against All (OAA) (Rifkin and Klautau, 2004) and the Error Correcting126

Output Coding (ECOC) (Dietterich and Bakiri, 1995) combination schemes127

are used.128

Briefly, OAA classifiers rely on the discrimination of individual classes129

against the others while ECOC codes are defined by a more general decom-130

position or ”‘coding matrix”’ M ∈ {0, 1}L×N , which converts a L-multiclass131

problem into N binary tasks (Dietterich and Bakiri, 1995). There are several132

coding matrices reported in the bibliography (Allwein et al., 2000; Dietterich133

and Bakiri, 1995; Rifkin and Klautau, 2004). In particular, we work with ran-134

dom ECOC codes, each entry of the coding matrix chosen to be 0 or 1 with135

equal probability and N limited by the maximum number of different and136

non-complementary binary vectors that can be generated for dichotomization137

(Dietterich and Bakiri, 1995).138
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The original approach to ECOCs predicts the class whose corresponding139

row vector has minimum Hamming distance to the vector of 0/1 predictions140

obtained from the N classifiers (Dietterich and Bakiri, 1995). (Allwein et al.,141

2000) presented an alternative, loss-based decoding, which notices the mag-142

nitude of the predictions, sometimes interpreted as a measure of “confidence”143

of a prediction. Several authors verified that Loss-decoding indeed produces144

more accurate classifiers than the Hamming distance (Allwein et al., 2000;145

Frank and Kramer, 2004; Rifkin and Klautau, 2004).146

3. Materials and Methods147

3.1. Datasets148

We compiled three molecular marker datasets representing a broad spec-149

trum of temperate and tropical germplasm. The Liu Data (Liu et al.,150

2003) comprises 197 inbreeds (instances) of both temperate and tropical151

germplasm characterized by 188 attributes derived from 94 microsatellites.152

The number of distinct values per attribute ranges from 4 to 48 with a153

mean of 18.18. Missing data represents a 4.75 % of the total, ranging154

from 0% to 25.38%, depending on the attribute. Instances are distributed155

into 10 heterotic groups (classes) and the number of instances per group156

is {61, 13, 11, 8, 9, 13, 28, 17, 29, 8}. The Morales Data (Morales Yokobori157

et al., 2005) comprises 26 temperate inbreeds of germoplasm characterized158

by 42 attributtes derived from 21 microsatellites. The number of distinct159

values per attribute ranges from 2 to 13 with a mean of 4.72. Missing data160

represents a 8.60% of a total, ranging from 0% to 42% of missing data per161

attribute. Instances are distributed into 4 heterotic groups and the num-162

ber of instances per group is {4, 8, 6, 8}. The Xia Data (Xia et al., 2004)163

comprises 73 inbreeds of tropical germplasm characterized by 166 attributes164

derived from 83 microsatellites. The number of distinct values per attribute165

ranges from 2 to 14 with a mean of 5.93. Missing data represents the 8.02%166

from the total, ranging from 0% to 43.84% of missing data per attribute.167

Instances are grouped into 8 heterotic groups and the number of instances168

per group is {22, 17, 7, 5, 5, 5, 5, 7}.169

3.1.1. Classifiers170

Simple Logistic, Naive Bayes and Bayes Nets were all implemented with171

defaults parameters of Weka (Witten and Frank, 2005). SVMs were evaluated172

using linear and radial basis function (RBF) kernels, both also with default173

6



parameters (C = 1 for linear kernels and C = 1, γ = 0.01 for radial basis174

function kernels). In both SVM alternatives, we choose the option “to fit Lo-175

gistic regression models” of Weka’s SMO (Sequential Minimal Optimization)176

algorithm for SVMs, which allows to emit an estimate of the confidence for177

the binary prediction instead of (0,1) hard outputs.178

Concerning the implementation of ECOC classifiers, in a preliminary re-179

search we evaluated the data with variable length codes and we did observed180

a positive correlation between ECOC accuracy and code length. As a trade181

off between classifier’s performance and computational complexity we choose182

random codes of length N = 6 for Morales Data, N = 55 for Xia data and183

N = 75 for Liu data. Therefore, 75 SVMs were used for the ECOC classifi-184

cation of Liu data, 55 for Xia data, and 6 for Morales data. The multiclass185

schemes were implemented as a new WEKA classifier and integrated into the186

original package (Witten and Frank, 2005).187

3.1.2. Evaluation of classifier’s performance188

The predictive power of supervised learning algorithms on molecular189

marker data was evaluated by means of the error rate (Borra and Ciac-190

cio, 2005) and the Cohen’s Kappa coefficient (Cohen, 1960) exhibited across191

30 Montecarlo runs of stratified 10-Fold Cross Validation (CV) experiments192

(Kirchner et al., 2004; Kohavi, 1995). At each Montecarlo run, the data was193

split into 10 different segments of almost the same size and containing appro-194

ximately the same proportion of categories as the original dataset. For each195

segment, classifiers were respectively trained and evaluated on the samples196

derived by omitting the selected segment and on selected segment. At the end197

of this procedure, the average classification error and the average Kappa co-198

efficient were reported. The choice of the Kappa coefficient was motivated by199

its ability to better measure the agreement between binary inter-annotators200

than the traditional classification error. In particular, the Kappa coefficient201

takes into account chance agreements (Cohen, 1960; Kirchner et al., 2004)202

and it is well suited for unequal class distribution datasets.203

Two main classification scenarios were considered: i) NB, BN, SL, OAA-204

rbf (SVM with radial basis function), ECOC-rbf, OAA-linear (SVM with205

linear kernel) and ECOC linear classifiers on full molecular marker data, and206

ii) the same classifiers evaluated on reduced data derived by the application207

of feature selection algorithms.208
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3.1.3. Missing data209

Regarding missing data, all associated to nominal attributes, imputation210

depends on the classifier evaluated (X.Su et al., 2008). In Weka, Naive Bayes211

ignores the missing values whereas SMO globally replaces all missing values212

by a default value, e.g., “unknown” (X.Su et al., 2008). Finally, in Bayes213

Net and Simple Logistic classification, missing values of training and test set214

are filled in using the mode of the corresponding attribute valuated on the215

training data (Bouckaert, 2008; Landwehr et al., 2005).216

3.1.4. Statistical comparison among classifiers217

It is important to assess whether the observed difference in classification218

performance is statistically significant or simply due to chance (Luengo et al.,219

2009). Comparisons of arithmetic means and visual inspection of Kappa220

boxplots was supplemented with Kolmogorov-Smirnov (KS-test) provided221

by the R2 environment (stats package). KS is a nonparametric test and it222

has the advantage of making no assumption about the distribution of data223

(Luengo et al., 2009). For each dataset and condition evaluated (Full and224

reduced data derived by the application of feature selection algorithms), all225

possible pairs of (A,B) Kappa coefficients distributions were assessed under226

the alternative hypothesis “distribution B is greater than distribution A”227

(The R Development Core Team, 2009)228

3.2. Feature Selection229

Reducing the feature space to non-redundant features results in improved230

classification accuracy and helps avoid overfitting of the classifiers. In this231

study, we mainly experimented with Correlation-based Feature Subset selec-232

tion (CFS) (Hall, 2000). The CFS strategy uses a correlation-based heuristic233

to evaluate the merit of feature subsets with respect to classification cat-234

egories and the correlation between features. CFS selection implemented235

in WEKA is fully automatic and does not require a priori specification of236

the number of features to be included in the final subset (Hall, 2000). In237

addition, we applied a second feature selection method, Relief (Kononenko,238

1994), to Morales Data. This method ranks the worth of an attribute by239

repeatedly sampling an instance and considering the value of the given at-240

tribute for the nearest instance of the same and different class (Kononenko,241

2http://www.rproject. org/
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1994). In other words, Relief assigns more weight to those attributes that242

have the same value for instances from the same class and differentiate be-243

tween instances from different classes (Witten and Frank, 2005). The Relief244

algorithm was calibrated in order to retain 25, 50 and 75% of the original245

number of attributes.246

3.2.1. SVM parameters optimization247

Optimization of the meta-parameters, C (regularization parameter) of248

linear kernel and C and γ (RBF kernel), is the key step in SVM performance249

(Devos et al., 2009). Globally, when C is small the margin maximization250

is emphasized leading to large margin and smooth boundary. The number251

of support vectors included in the solution depends on this parameter and,252

usually, if the number of support vectors is high the solution is unstable and253

leads to poor classification performance. (Devos et al., 2009; Forman and254

Cohen, 2004). Also, when the value of γ is large, the separating boundary255

has a large number of support vectors and can become tortuous. Again,256

this risks overfitting the training set data to yield an SVM model that is257

not robust. In contrast, a small value of γ can lead to separating boundaries258

described with a small number of support vectors but that may be too smooth259

to classify the training set examples with sufficient accuracy (Devos et al.,260

2009; Jorissen and Gilson, 2005). In RBF kernels it has been reported that261

different combinations of C and γ lead to similar classification rates (Devos262

et al., 2009). To perform the optimization we implemented an exhaustive263

grid search: 30 points (C = 0.25, 0.5, 1, 2, 4 and G = 0.0001, 0.001, 0.01,264

0.1, 1, 10) for radial basis function kernel and 5 points (C = 0.25, 0.5, 1,265

2, 4) for the linear kernel. This approach enables to visualize directly the266

effect of both parameters and provides useful information about core SVM267

classifiers. In order to minimize the risk of overfitting, all parameters were268

estimated by external leaving out one Cross Validation (Morales) or 10 fold269

Cross Validation (Liu and Xia datasets) over the training data (Ambroise270

and McLachlan, 2002).271

4. Results and Discussion272

Three native multiclass classifiers plus Support Vector Machines classi-273

fiers under the OAA (Rifkin and Klautau, 2004) and ECOC frameshifts (Di-274

etterich and Bakiri, 1995) were evaluated on three molecular marker datasets275

representing a broad spectrum of maize heterotic patterns. Generalization276
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error of classifiers in this domain was estimated by means of the error-rate277

and the Kappa Cohen’s Coefficient. Error-rate, defined as the ratio between278

the number of misclassified cases and the total number of cases examined,279

is the common measure used in nonparametric classification models (Borra280

and Ciaccio, 2005). However, it does not compensate for classifications that281

might have been due to chance. Hence, we also used the Cohen’s Kappa282

as a statistically robust alternative, especially in datasets with an unequal283

distribution of classes. Both statistics were determined by 30 runs of Mon-284

tecarlo 10-Fold CV experiments. Arithmetic means of these statistics, with285

and without feature selection, are shown in Table 2. It can be observed that286

results according to mean error-rate and Kappa values do not always agree.287

For example, in Liu Full data, SL and NB display identical error rates and288

different kappa values; in Liu CFS reduced data the four SVM ensembles289

rank different either we consider kappa or error rate values; also in Xia CFS290

data OAA schemes rank different whatever we choose error rate or kappa291

(Table 2). Overall, classification results seem to be problem-dependent, in-292

definite and not always normal. Therefore arithmetics means may be not293

always provide representative measures of classification performance. Conse-294

quently, comparison of means and visual inspection of Kappa boxplots was295

supplemented with Kolmogorov-Smirnov (KS) tests (Luengo et al., 2009).296

We recall that KS is a nonparametric test which does not rely on an assump-297

tion of normality (Luengo et al., 2009).298

4.1. Results on Full Data299

Bayes Net exhibited the best mean performance on full Liu Data (Table300

2). Visual inspection of Kappa boxplots and KS test agreed with this result301

(Figure 1). All KS tests were significant when comparing the rest of classifiers302

to BN. For example, p-value = 6.55e-05 when comparing ECOC-rbf and303

OAA-rbf (the closest classifiers according to kappa coefficient) to BN.304

In Xia Data, ECOC-rbf significantly exceeds the rest of classifiers (Table305

2 and Figure 2). In all KS tests (any classifier vs. ECOC-rbf) the null306

hypothesis was rejected; as an example, p-value = 0.0015 when comparing307

ECOC-linear (the second ranked classifier) against this ensemble.308

Finally, Simple Logistic exhibited the best mean performance on full309

Morales data (Table 2), a fact that was confirmed by corresponding Kappa310

boxplots (Figure 3). Moreover, when comparing the rest of the classifiers311

with Simple Logistic using KS, the highest p-value obtained was 0.0006, i.e.,312

all null hypotheses were rejected. Concerning SL, our results are in agreement313
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with Landwehr et al. (2005). When evaluating Liu and Xia data, which are314

more complex with respect to the number of classes, the number of attributes315

and the number of instances, the classifier displayed the worst performance316

(Figures 1 and 2). Even though, we included this classifier in the analysis317

because its good performance on Morales data, and this dataset is similar,318

with regard to number of instances and/or attributes, to most works reported319

in the literature, specially those from development countries (dos Santos Dias320

et al., 2004).321

4.2. Impact of Feature Selection322

The genetic basis of heterosis has been debated for nearly a century323

without a clear resolution. The two main hypotheses that advanced to324

explain this phenomenon are dominance and overdominance (Hallauer and325

Miranda, 1988; Springer and Stupar, 2007). It is also well documented that326

not all markers will be linkage to genes or QTL (quantitative trait locus)327

associated with heterosis (Austin et al., 2000). Moreover, the diploid nature328

of data and the characteristics of the instances (homozygous lines) allow329

us to infer the existence of some redundancy in attributes. Therefore, we330

implemented CFS (Correlation-based Feature Selection) in order to remove331

attributes not related to the class. The number of CFS selected attributes332

was variable, depending on the dataset; extreme values ranged from 13.83 to333

47.62 % of the initial number of features (Table 1).334

Almost none of the classifiers improve their performance with filtered data335

(Table 2 and boxplots). The only exception were Naive Bayes and Bayes net336

evaluated on Xia Data (Figure 2). Even though, ECOC-rbf was still the best337

classifier, all ks tests were statistically significant when comparing the rest338

of classifiers to this ensemble.339

In Morales reduced data and according to arithmetic means (Table 2 and340

boxplot of Figure 3) SL was still the best classifier. However, when ECOC341

linear (with default parameters) was compared to SL, the p-value was 0.0672.342

The rest of classifiers did show significant p-values in KS test. Finally, in Liu343

Data, though Naive Bayes degraded its performance with CFS filtering, like344

the rest of the classifiers, it ranked second after Bayes Net (p-value < 0.05).345

Theory suggests that interactions between genes associated with molec-346

ular markers could play an important role in the generation of the observed347

heterosis (Dudley and Johnson, 2009). Hence, it may be possible that us-348

ing filters that contemplate interactions between attributes could lead to349

improved classification performance.350
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4.3. Data Complexity351

Molecular marker data showed to be complex enough to require the care-352

ful exploration of non-trivial multiclass classifiers: the attribute-class rela-353

tionship is possibly non-linear (dos Santos Dias et al., 2004; Springer and Stu-354

par, 2007) and datasets present noisy and/or missing features (Jones et al.,355

1997). Also, the dimensionality of molecular marker data is between that356

of the classic Machine Learning setting (n/p > 10) (Asuncion and Newman,357

2007; Kohavi, 1995) and that posed by recent challenging microarray data358

classification problems (n/p << 1) (Mukherjee et al., 2003), where n is the359

number of instances and p the number of attributes. Actually, the number360

of classes ranges from 4 to 10 and the number of instances per class is gen-361

erally less than 30, which is a very low number of training instances (dos362

Santos Dias et al., 2004; Liu et al., 2003; Morales Yokobori et al., 2005; Xia363

et al., 2004).364

When comparing classifiers performance on full data scenarios we did365

observe significant differences between Liu, Xia and Morales data results366

(Table 2). Kappa values ranging between 0.61-0.80 indicate a substantial367

agreement between observed and predicted data whereas values below 0.20368

indicate only a slight agreement (Landis and Koch, 1977).369

From a genetic point of view, differences of methods used to established370

the heterotic groups could be reflecting differences between mechanisms relat-371

ing attributes (molecular markers) with classes (heterotic groups): heterotic372

groups of Xia and Morales data where established on the basis of field essays373

(topcross or diallel) and, according to Xia et al. (2004), the mixed genetic374

constitution of the populations and pools of Cymmit germplasm (Xia data)375

made the task of assigning them to genetically diverse and complementary376

heterotic groups difficult. A similar situation was reported for Morales data377

(Eyhérabide et al., 2006). Liu data clusters, on the other side, were estab-378

lished on the basis of genetic origin (Liu et al., 2003) so it was easy to assign379

new lines to groups solely on molecular data.380

From a Machine Learning point of view, these differences could be due381

to a challenging ratio between the number of instances (n) and the number382

of attributes (p) of training data (Kohavi, 1995; Mukherjee et al., 2003). For383

example, for microarray data (extremely low n/p ratios) achieving error rates384

around 0.1-0.2% requires in the order of 75-100 training samples (Mukherjee385

et al., 2003), whereas Kohavi (1995) reported error rates from 5.8 to 53.2%386

when working with datasets comprising a number of instances and a number387

of attributes similar to those used in this work. However, if the modest388
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classification performance for Morales and Xia databases is only due to the389

n/p ratios (specially for Morales data set), a good feature selection method390

should be able to improve the results. It can be seen from figures 2 and 3 that391

attribute CFS selection didn’t improve the accuracy of the classifiers. We392

performed an additional experiment on Morales dataset using another filter393

method implemented in Weka, Relief (Kononenko, 1994), and selecting 25,394

50 and 75% of the original number of attributes. Filtered data was evaluated395

with Simple Logistic and the four SVM ensembles as stated in Materials and396

Methods. It can be seen from Figure 4 that, except a few and non-significant397

exceptions, all classifiers degraded their performance at increasingly higher398

n/p ratios.399

It has been reported that SVM classifiers are quite sensitive to meta-400

parameters (Devos et al., 2009; Rifkin and Klautau, 2004). However, we401

couldn´t observe a significant enhancement of ensembles performance with402

the optimization of the meta-parameters (C in linear kernel and C and γ in403

radial basis function kernel). None of the optimized linear SVM-ensembles404

significantly outperformed their standard counterparts (Table 3). In Xia data405

both, OAA and ECOC, optimized RBF ensembles outperformed classifiers406

with default values provided by Weka (Table 4). In Morales data, only OAA-407

RBF showed a significant improvement with optimized parameters (Table 4).408

With respect to Morales data, this is reasonable because with small training409

sets optimization of parameters, even by cross-validation, may only lead to410

over fitting the training set (Forman and Cohen, 2004). Surprisingly, in411

Liu data none of the optimized SVM ensembles (significantly) outperformed412

their counterparts with default parameters. This could be attributed to the413

number of missing data and the imputation technique of SMO (X.Su et al.,414

2008), or to the robustness of ensembles to base classifier error (Dietterich415

and Bakiri, 1995).416

Overall, we should assume that despite the specific relation between pa-417

rameters n, p, L and the specific relationship between attributes and classes,418

if we apply the incorrect model, classification performance will be poor. In419

this sense, above results shed light on how to process molecular marker in-420

formation to be useful in the problem of assigning new lines to previously421

established heterotic groups.422
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5. Summary and conclusions423

The information on germplasm diversity and relationships among elite424

materials is a fundamental importance in crop improvement (Hallauer and425

Miranda, 1988). Assigning lines to different heterotic groups would avoid the426

development and evaluation of many of the crosses that would eventually be427

discarded (Terron et al., 1997). Our proposal was to complement traditional428

breeding using molecular markers information and supervised learning al-429

gorithms. Three well-known multiclassifiers and support vector machine (a430

binary classifier) with linear and radial basis function kernels and under two431

decomposition schemes were evaluated using three molecular datasets rep-432

resenting a broad spectrum of maize heterotic patterns. Morales dataset433

includes 26 lines, mostly derived from orange flint (temperate) germplasm,434

clustered in four heterotic groups by topcross field essays (Eyhérabide et al.,435

2006), Liu data includes 248 inbred lines of importance to temperate breeding436

and many important tropical and subtropical lines (Liu et al., 2003) and Xia437

data 73 inbreds of tropical germplasm grouped mainly by diallel (Xia et al.,438

2004). We also used CFS filtering to improve classifiers performance, but we439

only obtained a slight improvement in Xia data. We also evaluated Relief440

filtering on Morales data, with negative results. However, CFS removes noisy441

attributes non-correlated between them and theory suggest that interactions442

between genes associated with molecular markers could play an important443

role in the generation of the observed heterosis (Pea et al., 2008) so filters444

that contemplates this situation remains to be explored. Finally, although445

results obtained with heterotic groups established by field essays (top cross446

or diallel) are modest, there is a strong evidence that using data with more447

training instances could generate successful classifiers. Also it is necessary448

to evaluate other algorithms; the potential impact, in time and money, on449

crop sustainability makes our research worth to try: while traditional genetic450

breeding requires expensive field tests and a time scale in the order of years451

for obtaining an heterotic assignment, in our proposed framework costs are452

significantly lower and the time scale is in the order of weeks, two weeks for453

growing an small plant plus a week to obtain molecular data and a couple of454

days for computational analysis.455
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Tables596

Table 1: Number of features preserved by Correlation-based Feature Selection (CFS). Liu,
Xia, and Morales are the original molecular marker datasets. Full data denotes the initial
number of features of each dataset. Min and Max are respectively the arithmetic means
of the maximum and minimum number of features selected during the 30 Montecarlo runs
of 10-Fold CV experiments.

Dataset

Liu Xia Morales

Full data 188 166 42
Min 26 29 8
Max 50 42 20
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Table 2: Means of the error rate and Kappa values in 30 Montecarlo runs of 10-Fold CV
experiments. Native multiclass classifiers: Bayes Net (BN), Naive Bayes (NB), and Simple
Logistic (SL). Multiclass extensions of Support Vector Machines: One Against All (OAA)
and Error Correcting Ouput Coding (ECOC). Three molecular marker datasets, namely
Liu, Xia, and Morales, are considered. Results on full and Correlation-based Feature
Selection (CFS) reduced data are reported. Best results are shown in boldface.

Full data CFS reduced data

Classifier Liu Xia Morales Liu Xia Morales

error kappa error kappa error kappa error kappa error kappa error kappa
BN 0.205 0.749 0.475 0.368 0.715 0.039 0.280 0.658 0.428 0.455 0.755 -0.032
NB 0.345 0.685 0.472 0.372 0.751 0.000 0.294 0.638 0.432 0.439 0.772 -0.057
ECOC linear* 0.252 0.701 0.435 0.469 0.660 0.087 0.341 0.598 0.459 0.436 0.753 -0.039
ECOC rbf* 0.223 0.730 0.385 0.523 0.681 0.078 0.320 0.613 0.402 0.500 0.786 -0.078
OAA linear* 0.245 0.706 0.415 0.465 0.645 0.116 0.348 0.571 0.460 0.424 0.768 -0.059
OAA rbf* 0.223 0.730 0.429 0.442 0.690 0.043 0.357 0.579 0.462 0.433 0.819 -0.127
SL 0.345 0.576 0.436 0.433 0.572 0.210 0.367 0.552 0.537 0.326 0.703 0.033
* SVM with linear and radial basis function (rbf) kernels were implemented with defaults parameters of

the Weka workbench (see Materials and Methods).

Figures597
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Table 3: Means of the error rate and Kappa values in 30 Montecarlo runs of 10-Fold CV
experiments of optimized SVM with linear kernel under two decomposition schemes (OAA
and ECOC).

Classifier One Against All Random Code

error kappa KS test (kappa) * kappa error KS test (kappa)*

Morales Data 0.6308 0.1338 p-val = 0.1184 0.6500 0.1021 p-val = 0.3012
Xia Data 0.4160 0.4631 p-val = 0.5866 0.4438 0.4576 p-val = 0.9672
Liu Data 0.2302 0.7160 p-val = 0.9560 0.2330 0.7210 p-val = 0.9354
* Kolmogorov Smirnov test was performed between kappa values of classifier with default pa-

rameter (Table 2) and outputs of classifier with optimized parameters (this table) as stated in
Materials and Methods.

Figure 1: Liu data. Boxplots of the Cohen’s Kappa coefficient in 30 Montecarlo runs of
10-Fold CV experiments. Native multiclass classifiers: Bayes Network (BN), Naive Bayes
(NB), and Simple Logistic (SL). Multiclass extensions of Support Vector Machines (SVM):
One Against All (OAA) and Error Correcting Ouput Coding (ECOC). Base classifiers: lin
- SVM with linear kernel, rbf - SVM with radial basis function kernel. Results on full
(Top) and Correlation-based Feature Selection (CFS) reduced data (Bottom) are shown.

Figure 2: Xia data. Boxplots of the Cohen’s Kappa coefficient in 30 Montecarlo runs of
10-Fold CV experiments. Native multiclass classifiers: Bayes Network (BN), Naive Bayes
(NB), and Simple Logistic (SL). Multiclass extensions of Support Vector Machines (SVM):
One Against All (OAA) and Error Correcting Ouput Coding (ECOC). Base classifiers: lin
- SVM with linear kernel, rbf - SVM with radial basis function kernel. Results on full
(Top) and Correlation-based Feature Selection (CFS) reduced data (Bottom) are shown.

Figure 3: Morales data. Boxplots of the Kappa coefficient in 30 Montecarlo runs of
10-Fold CV experiments. Native multiclass classifiers: Bayes Network (BN), Naive Bayes
(NB), and Simple Logistic (SL). Multiclass extensions of Support Vector Machines (SVM):
One Against All (OAA) and Error Correcting Ouput Coding (ECOC). Base classifiers: lin
- SVM with linear kernel, rbf - SVM with radial basis function kernel. Results on full
(Top) and Correlation-based Feature Selection (CFS) reduced data (Bottom) are shown.
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Table 4: Means of the error rate and Kappa values in 30 Montecarlo runs of 10-Fold CV
experiments of optimized SVM with radial basis function kernel under two decomposition
schemes (OAA and ECOC).

Classifier One Against All Random Code

error kappa KS test (kappa) * kappa error KS test (kappa)*

Morales Data 0.6795 0.0509 p-val = 0.0761 0.7556 -0.0410 p-val = 1.0000
Xia Data 0.4201 0.4550 p-val = 0.0357 0.3583 0.5540 p-val = 0.0327
Liu Data 0.2200 0.7350 p-val = 0.9030 0.2430 0.7500 p-val = 0.9350
* Kolmogorov Smirnov test was performed between kappa values of classifier with default pa-

rameter (Table 2) and outputs of classifier with optimized parameters (this table) as stated in
Materials and Methods.

Figure 4: Morales data. Boxplots of the Kappa coefficient in 30 Montecarlo runs of
10-Fold CV experiments. Full and Relief Filtered data: Simple Logistic (SL). Multiclass
extensions of Support Vector Machines (SVM): One Against All (OAA) and Error Cor-
recting Ouput Coding (ECOC). Base classifiers: lin - SVM with linear kernel, rbf - SVM
with radial basis function kernel. 42, 33, 21 and 12 indicates the number of attributes
retained after filtering
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