15,833 research outputs found

    Stronger Leakage-Resilient and Non-Malleable Secret-Sharing Schemes for General Access Structures

    Get PDF
    In this work we present a collection of compilers that take secret sharing schemes for an arbitrary access structures as input and produce either leakage-resilient or non-malleable secret sharing schemes for the same access structure. A leakage-resilient secret sharing scheme hides the secret from an adversary, who has access to an unqualified set of shares, even if the adversary additionally obtains some size-bounded leakage from all other secret shares. A non-malleable secret sharing scheme guarantees that a secret that is reconstructed from a set of tampered shares is either equal to the original secret or completely unrelated. To the best of our knowledge we present the first generic compiler for leakage-resilient secret sharing for general access structures. In the case of non-malleable secret sharing, we strengthen previous definitions, provide separations between them, and construct a non-malleable secret sharing scheme for general access structures that fulfills the strongest definition with respect to independent share tampering functions. More precisely, our scheme is secure against concurrent tampering: The adversary is allowed to (non-adaptively) tamper the shares multiple times, and in each tampering attempt can freely choose the qualified set of shares to be used by the reconstruction algorithm to re-construct the tampered secret. This is a strong analogue of the multiple-tampering setting for split-state non-malleable codes and extractors. We show how to use leakage-resilient and non-malleable secret sharing schemes to construct leakage-resilient and non-malleable threshold signatures. Classical threshold signatures allow to distribute the secret key of a signature scheme among a set of parties, such that certain qualified subsets can sign messages. We construct threshold signature schemes that remain secure even if an adversary leaks from or tampers with all secret shares

    Non-Malleable Secret Sharing for General Access Structures

    Get PDF
    Goyal and Kumar (STOC\u2718) recently introduced the notion of non-malleable secret sharing. Very roughly, the guarantee they seek is the following: the adversary may potentially tamper with all of the shares, and still, either the reconstruction procedure outputs the original secret, or, the original secret is ``destroyed and the reconstruction outputs a string which is completely ``unrelated to the original secret. Prior works on non-malleable codes in the 2 split-state model imply constructions which can be seen as 2-out-of-2 non-malleable secret sharing (NMSS) schemes. Goyal and Kumar proposed constructions of t-out-of-n NMSS schemes. These constructions have already been shown to have a number of applications in cryptography. We continue this line of research and construct NMSS for more general access structures. We give a generic compiler that converts any statistical (resp. computational) secret sharing scheme realizing any access structure into another statistical (resp. computational) secret sharing scheme that not only realizes the same access structure but also ensures statistical non-malleability against a computationally unbounded adversary who tampers each of the shares arbitrarily and independently. Instantiating with known schemes we get unconditional NMMS schemes that realize any access structures generated by polynomial size monotone span programs. Similarly, we also obtain conditional NMMS schemes realizing access structure in monotoneP (resp. monotoneNP) assuming one-way functions (resp. witness encryption). Towards considering more general tampering models, we also propose a construction of n-out-of-n NMSS. Our construction is secure even if the adversary could divide the shares into any two (possibly overlapping) subsets and then arbitrarily tamper the shares in each subset. Our construction is based on a property of inner product and an observation that the inner-product based construction of Aggarwal, Dodis and Lovett (STOC\u2714) is in fact secure against a tampering class that is stronger than 2 split-states. We also show applications of our construction to the problem of non-malleable message transmission

    Revisiting Non-Malleable Secret Sharing

    Get PDF
    A threshold secret sharing scheme (with threshold tt) allows a dealer to share a secret among a set of parties such that any group of tt or more parties can recover the secret and no group of at most t1t-1 parties learn any information about the secret. A non-malleable threshold secret sharing scheme, introduced in the recent work of Goyal and Kumar (STOC\u2718), additionally protects a threshold secret sharing scheme when its shares are subject to tampering attacks. Specifically, it guarantees that the reconstructed secret from the tampered shares is either the original secret or something that is unrelated to the original secret. In this work, we continue the study of threshold non-malleable secret sharing against the class of tampering functions that tamper each share independently. We focus on achieving greater efficiency and guaranteeing a stronger security property. We obtain the following results: - Rate Improvement. We give the first construction of a threshold non-malleable secret sharing scheme that has rate >0> 0. Specifically, for every n,t4n,t \geq 4, we give a construction of a tt-out-of-nn non-malleable secret sharing scheme with rate Θ(1tlog2n)\Theta(\frac{1}{t\log ^2 n}). In the prior constructions, the rate was Θ(1nlogm)\Theta(\frac{1}{n\log m}) where mm is the length of the secret and thus, the rate tends to 0 as mm \rightarrow \infty. Furthermore, we also optimize the parameters of our construction and give a concretely efficient scheme. - Multiple Tampering. We give the first construction of a threshold non-malleable secret sharing scheme secure in the stronger setting of bounded tampering wherein the shares are tampered by multiple (but bounded in number) possibly different tampering functions. The rate of such a scheme is Θ(1k3tlog2n)\Theta(\frac{1}{k^3t\log^2 n}) where kk is an apriori bound on the number of tamperings. We complement this positive result by proving that it is impossible to have a threshold non-malleable secret sharing scheme that is secure in the presence of an apriori unbounded number of tamperings. - General Access Structures. We extend our results beyond threshold secret sharing and give constructions of rate-efficient, non-malleable secret sharing schemes for more general monotone access structures that are secure against multiple (bounded) tampering attacks

    Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model

    Get PDF
    Secret sharing enables a dealer to split a secret into a set of shares, in such a way that certain authorized subsets of share holders can reconstruct the secret, whereas all unauthorized subsets cannot. Non-malleable secret sharing (Goyal and Kumar, STOC 2018) additionally requires that, even if the shares have been tampered with, the reconstructed secret is either the original or a completely unrelated one. In this work, we construct non-malleable secret sharing tolerating pp-time {\em joint-tampering} attacks in the plain model (in the computational setting), where the latter means that, for any p>0p>0 fixed {\em a priori}, the attacker can tamper with the same target secret sharing up to pp times. In particular, assuming one-to-one one-way functions, we obtain: - A secret sharing scheme for threshold access structures which tolerates joint pp-time tampering with subsets of the shares of maximal size ({\em i.e.}, matching the privacy threshold of the scheme). This holds in a model where the attacker commits to a partition of the shares into non-overlapping subsets, and keeps tampering jointly with the shares within such a partition (so-called {\em selective partitioning}). - A secret sharing scheme for general access structures which tolerates joint pp-time tampering with subsets of the shares of size O(logn)O(\sqrt{\log n}), where nn is the number of parties. This holds in a stronger model where the attacker is allowed to adaptively change the partition within each tampering query, under the restriction that once a subset of the shares has been tampered with jointly, that subset is always either tampered jointly or not modified by other tampering queries (so-called {\em semi-adaptive partitioning}). At the heart of our result for selective partitioning lies a new technique showing that every one-time {\em statistically} non-malleable secret sharing against joint tampering is in fact {\em leakage-resilient} non-malleable ({\em i.e.},\ the attacker can leak jointly from the shares prior to tampering). We believe this may be of independent interest, and in fact we show it implies lower bounds on the share size and randomness complexity of statistically non-malleable secret sharing against {\em independent} tampering

    Leakage Resilient Secret Sharing and Applications

    Get PDF
    A secret sharing scheme allows a dealer to share a secret among a set of nn parties such that any authorized subset of the parties can recover the secret, while any unauthorized subset of the parties learns no information about the secret. A local leakage-resilient secret sharing scheme (introduced in independent works by (Goyal and Kumar, STOC 18) and (Benhamouda, Degwekar, Ishai and Rabin, Crypto 18)) additionally requires the secrecy to hold against every unauthorized set of parties even if they obtain some bounded local leakage from every other share. The leakage is said to be local if it is computed independently for each share. So far, the only known constructions of local leakage resilient secret sharing schemes are for threshold access structures for very low (O(1)O(1)) or very high (no(logn)n -o(\log n)) thresholds. In this work, we give a compiler that takes a secret sharing scheme for any monotone access structure and produces a local leakage resilient secret sharing scheme for the same access structure, with only a constant-factor blow-up in the sizes of the shares. Furthermore, the resultant secret sharing scheme has optimal leakage-resilience rate i.e., the ratio between the leakage tolerated and the size of each share can be made arbitrarily close to 11. Using this secret sharing scheme as the main building block, we obtain the following results: 1. Rate Preserving Non-Malleable Secret Sharing: We give a compiler that takes any secret sharing scheme for a 4-monotone access structure with rate RR and converts it into a non-malleable secret sharing scheme for the same access structure with rate Ω(R)\Omega(R). The prior such non-zero rate construction (Badrinarayanan and Srinivasan, 18) only achieves a rate of Θ(R/tmaxlog2n)\Theta(R/{t_{\max}\log^2 n}), where tmaxt_{\max} is the maximum size of any minimal set in the access structure. As a special case, for any threshold t4t \geq 4 and an arbitrary ntn \geq t, we get the first constant rate construction of tt-out-of-nn non-malleable secret sharing. 2. Leakage-Tolerant Multiparty Computation for General Interaction Pattern: For any function, we give a reduction from constructing leakage-tolerant secure multi-party computation protocols obeying any interaction pattern to constructing a secure (and not necessarily leakage-tolerant) protocol for a related function obeying the star interaction pattern. This improves upon the result of (Halevi et al., ITCS 2016), who constructed a protocol that is secure in a leak-free environment

    Leakage-Resilient Secret Sharing

    Get PDF
    In this work, we consider the natural goal of designing secret sharing schemes that ensure security against a powerful adaptive adversary who may learn some ``leaked\u27\u27 information about all the shares. We say that a secret sharing scheme is pp-party leakage-resilient, if the secret remains statistically hidden even after an adversary learns a bounded amount of leakage, where each bit of leakage can depend jointly on the shares of an adaptively chosen subset of pp parties. A lot of works have focused on designing secret sharing schemes that handle individual and (mostly) non-adaptive leakage for (some) threshold secret sharing schemes [DP07,DDV10,LL12,ADKO15,GK18,BDIR18]. We give an unconditional compiler that transforms any standard secret sharing scheme with arbitrary access structure into a pp-party leakage-resilient one for pp logarithmic in the number of parties. This yields the first secret sharing schemes secure against adaptive and joint leakage for more than two parties. As a natural extension, we initiate the study of leakage-resilient non-malleable secret sharing} and build such schemes for general access structures. We empower the computationally unbounded adversary to adaptively leak from the shares and then use the leakage to tamper with each of the shares arbitrarily and independently. Leveraging our pp-party leakage-resilient schemes, we also construct such non-malleable secret sharing schemes: any such tampering either preserves the secret or completely `destroys\u27 it. This improves upon the non-malleable secret sharing scheme of Goyal and Kumar (CRYPTO 2018) where no leakage was permitted. Leakage-resilient non-malleable codes can be seen as 2-out-of-2 schemes satisfying our guarantee and have already found several applications in cryptography [LL12,ADKO15,GKPRS18,GK18,CL18,OPVV18]. Our constructions rely on a clean connection we draw to communication complexity in the well-studied number-on-forehead (NOF) model and rely on functions that have strong communication-complexity lower bounds in the NOF model (in a black-box way). We get efficient pp-party leakage-resilient schemes for pp upto O(logn)O(\log n) as our share sizes have exponential dependence on pp. We observe that improving this dependence from 2O(p)2^{O(p)} to 2o(p)2^{o(p)} will lead to progress on longstanding open problems in complexity theory

    Split-State Non-Malleable Codes and Secret Sharing Schemes for Quantum Messages

    Full text link
    Non-malleable codes are fundamental objects at the intersection of cryptography and coding theory. These codes provide security guarantees even in settings where error correction and detection are impossible, and have found applications to several other cryptographic tasks. Roughly speaking, a non-malleable code for a family of tampering functions guarantees that no adversary can tamper (using functions from this family) the encoding of a given message into the encoding of a related distinct message. Non-malleable secret sharing schemes are a strengthening of non-malleable codes which satisfy additional privacy and reconstruction properties. We first focus on the 22-split-state tampering model, one of the strongest and most well-studied adversarial tampering models. Here, a codeword is split into two parts which are stored in physically distant servers, and the adversary can then independently tamper with each part using arbitrary functions. This model can be naturally extended to the secret sharing setting with several parties by having the adversary independently tamper with each share. Previous works on non-malleable coding and secret sharing in the split-state tampering model only considered the encoding of \emph{classical} messages. Furthermore, until the recent work by Aggarwal, Boddu, and Jain (arXiv 2022), adversaries with quantum capabilities and \emph{shared entanglement} had not been considered, and it is a priori not clear whether previous schemes remain secure in this model. In this work, we introduce the notions of split-state non-malleable codes and secret sharing schemes for quantum messages secure against quantum adversaries with shared entanglement. We also present explicit constructions of such schemes that achieve low-error non-malleability

    Non-Malleable Extractors and Codes, with their Many Tampered Extensions

    Get PDF
    Randomness extractors and error correcting codes are fundamental objects in computer science. Recently, there have been several natural generalizations of these objects, in the context and study of tamper resilient cryptography. These are seeded non-malleable extractors, introduced in [DW09]; seedless non-malleable extractors, introduced in [CG14b]; and non-malleable codes, introduced in [DPW10]. However, explicit constructions of non-malleable extractors appear to be hard, and the known constructions are far behind their non-tampered counterparts. In this paper we make progress towards solving the above problems. Our contributions are as follows. (1) We construct an explicit seeded non-malleable extractor for min-entropy klog2nk \geq \log^2 n. This dramatically improves all previous results and gives a simpler 2-round privacy amplification protocol with optimal entropy loss, matching the best known result in [Li15b]. (2) We construct the first explicit non-malleable two-source extractor for min-entropy knnΩ(1)k \geq n-n^{\Omega(1)}, with output size nΩ(1)n^{\Omega(1)} and error 2nΩ(1)2^{-n^{\Omega(1)}}. (3) We initiate the study of two natural generalizations of seedless non-malleable extractors and non-malleable codes, where the sources or the codeword may be tampered many times. We construct the first explicit non-malleable two-source extractor with tampering degree tt up to nΩ(1)n^{\Omega(1)}, which works for min-entropy knnΩ(1)k \geq n-n^{\Omega(1)}, with output size nΩ(1)n^{\Omega(1)} and error 2nΩ(1)2^{-n^{\Omega(1)}}. We show that we can efficiently sample uniformly from any pre-image. By the connection in [CG14b], we also obtain the first explicit non-malleable codes with tampering degree tt up to nΩ(1)n^{\Omega(1)}, relative rate nΩ(1)/nn^{\Omega(1)}/n, and error 2nΩ(1)2^{-n^{\Omega(1)}}.Comment: 50 pages; see paper for full abstrac

    Leakage-Resilient Secret Sharing in Non-Compartmentalized Models

    Get PDF
    corecore