77 research outputs found

    Non-Interactive Proofs of Proof-of-Work

    Get PDF
    Open consensus protocols based on proof-of-work (PoW) mining are at the core of cryptocurrencies such Bitcoin and Ethereum, as well as many others. In this work, we construct a new primitive called Non-Interactive Proofs of Proof-of-Work (NIPoPoWs) that can be adapted into existing PoW-based cryptocurrencies to improve their performance and extend their functionality. Unlike a traditional blockchain client which must verify the entire linearly-growing chain of PoWs, clients based on NIPoPoWs require resources only logarithmic in the length of the blockchain. NIPoPoWs are thus succinct proofs and require only a single message between the prover and the verifier of the transaction. With our construction we are able to prove a broad array of useful predicates in the context of cross PoW-based blockchain transfers of assets, including predicates about facts buried deep within a blockchain which is necessary for the basic application of accepting payments. We provide empirical validation for NIPoPoWs through an implementation and benchmark study, in the context of two new applications: First, we consider a multi-client blockchain that supports all proof-of-work currencies rather than just one, with up to 90% reduction in bandwidth. Second, we discuss a “cross-chain ICO” application that spans multiple independent blockchains. Using our experimental data, we provide concrete parameters for our scheme

    Proof-of-work sidechains

    Get PDF
    During the last decade, the blockchain space has exploded with a plethora of new cryptocurrencies, covering a wide array of different features, performance and security characteristics. Nevertheless, each of these coins functions in a stand-alone manner, independently. Sidechains have been envisioned as a mechanism to allow blockchains to communicate with one another and, among other applications, allow the transfer of value from one chain to another, but so far there have been no decentralized constructions. In this paper, we put forth the first side chains construction that allows communication between proof-of-work blockchains without trusted intermediaries. Our construction is generic in that it allows the passing of any information between blockchains. Using this construction, two blockchains can be connected in a “two-way peg” in which an asset can be transferred from one chain to another and back. We pinpoint the features needed for two chains to communicate: On the source side, a proof-of-work blockchain that has been interlinked, potentially with a velvet fork; on the destination side, a blockchain with smart contract support. We put forth the smart contracts needed to implement these sidechains and explain them in detail. In the heart of our construction, we use a recently introduced cryptographic primitive, Non-Interactive Proofs of Proof-of-Work (NIPoPoWs)

    Mining in logarithmic space

    Get PDF
    Blockchains maintain two types of data: Application data and consensus data. Towards long-term blockchain scalability, both of these must be pruned. While a large body of literature has explored the pruning of application data (UTXOs, account balances, and contract state), little has been said about the permanent pruning of consensus data (block headers). We present a protocol which allows pruning the blockchain by garbage collecting old blocks as they become unnecessary. These blocks can simply be discarded and are no longer stored by any miner. We show that all miners can be light miners with no harm to security. Our protocol is based on the notion of superblocks, blocks that have achieved an unusually high difficulty. We leverage them to represent underlying proof-of-work without ever illustrating it, storing it, or transmitting it. After our pruning is applied, the storage and communication requirements for consensus data are reduced exponentially. We develop new probabilistic mathematical methods to analyze our protocol in the random oracle model. We prove our protocol is both secure and succinct under an uninterrupted honest majority assumption for 1/3 adversaries. Our protocol is the first to achieve always secure, always succinct, and online Non-Interactive Proofs of Proof-of-Work, all necessary components for a logarithmic space mining scheme. Our work has applications beyond mining and also constitutes an improvement in state-of-the-art superlight clients and cross-chain bridges

    Compact storage of superblocks for NIPoPoW applications

    Get PDF
    Blocks in proof-of-work (PoW) blockchains satisfy the PoW equation H(B) ≀ T. If additionally a block satisfies H(B) ≀ T 2−Ό, it is called a ÎŒ-superblock. Superblocks play an important role in the construction of compactblockchain proofs which allows the compression of PoW blockchains into so-called Non-Interactive Proofs of Proof-of-Work (NIPoPoWs). These certificates are essential for the construction of superlight clients, which are blockchain wallets thatcan synchronize exponentially faster than traditional SPV clients. In this work, we measure the distribution of superblocks in the Bitcoin blockchain. We find that the superblock distribution within the blockchain follows expectation, hence we empirically verify that the distribution of superblocks within the Bitcoin blockchain has not been adversarially biased. NIPoPoWs require that each block in a blockchain points to a sample of previous blocks in the blockchain. These pointers form a data structure called the interlink. We give efficient ways to store the interlink data structure. Repeated superblock references within an interlink can be omitted with no harm to security. Hence, it is more efficient to store a set of superblocks rather than a list. We show that, in honest executions, this simple observation reduces the number ofsuperblock references by approximately a half in expectation. We then verify our theoretical result by measuring the improvement over existing blockchains in terms of the interlink sizes (which we improve by 79%) and the sizes of succinct NIPoPoWs(which we improve by 25%). As such, we show that deduplication allows superlight clients to synchronize 25% faster

    Mining in Logarithmic Space

    Get PDF
    Blockchains maintain two types of data: Application data and consensus data. Towards long-term blockchain scalability, both of these must be pruned. While a large body of literature has explored the pruning of application data (UTXOs, account balances, and contract state), little has been said about the permanent pruning of consensus data (block headers). We present a protocol which allows pruning the blockchain by garbage collecting old blocks as they become unnecessary. These blocks can simply be discarded and are no longer stored by any miner. We show that all miners can be light miners with no harm to security. Our protocol is based on the notion of superblocks, blocks that have achieved an unusually high difficulty. We leverage them to represent underlying proof-of-work without ever illustrating it, storing it, or transmitting it. After our pruning is applied, the storage and communication requirements for consensus data is reduced exponentially. We develop new probabilistic mathematical methods to analyze our protocol in the random oracle model. We prove our protocol is both secure and succinct under an uninterrupted honest majority assumption for 1/31/3 adversaries. Our protocol is the first to achieve always secure, always succinct, and online Non-Interactive Proofs of Proof-of-Work, all necessary components for a logarithmic space mining scheme. Our work has applications beyond mining and also constitutes an improvement in state-of-the-art superlight clients and cross-chain bridges

    Compact Storage of Superblocks for NIPoPoW Applications

    Get PDF
    Blocks in proof-of-work (PoW) blockchains satisfy the PoW equation H(B)≀TH(B) \leq T. If additionally a block satisfies H(B)≀T2−ΌH(B) \leq T2^{-\mu}, it is called a ÎŒ\mu-superblock. Superblocks play an important role in the construction of compact blockchain proofs which allows the compression of PoW blockchains into so-called Non-Interactive Proofs of Proof-of-Work (NIPoPoWs). These certificates are essential for the construction of superlight clients, which are blockchain wallets that can synchronize exponentially faster than traditional SPV clients. In this work, we measure the distribution of superblocks in the Bitcoin blockchain. We find that the superblock distribution within the blockchain follows expectation, hence we empirically verify that the distribution of superblocks within the Bitcoin blockchain has not been adversarially biased. NIPoPoWs require that each block in a blockchain points to a sample of previous blocks in the blockchain. These pointers form a data structure called the interlink. We give efficient ways to store the interlink data structure. Repeated superblock references within an interlink can be omitted with no harm to security. Hence, it is more efficient to store a set of superblocks rather than a list. We show that, in honest executions, this simple observation reduces the number of superblock references by approximately a half in expectation. We then verify our theoretical result by measuring the improvement over existing blockchains in terms of the interlink sizes (which we improve by 79%79\%) and the sizes of succinct NIPoPoWs (which we improve by 25%25\%). As such, we show that deduplication allows superlight clients to synchronize 25%25\% faster
    • 

    corecore