7,004 research outputs found

    Lorenz, G\"{o}del and Penrose: New perspectives on determinism and causality in fundamental physics

    Full text link
    Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as G\"{o}del's Incompleteness Theorem. These properties, combined with some recent developments in theoretical and observational cosmology, motivate what is referred to as the `cosmological invariant set postulate': that the universe UU can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set IUI_U in its state space. Symbolic representations of IUI_U are constructed explicitly based on permutation representations of quaternions. The resulting `invariant set theory' provides some new perspectives on determinism and causality in fundamental physics. For example, whilst the cosmological invariant set appears to have a rich enough structure to allow a description of quantum probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, a `gravitational theory of the quantum' is proposed based on the geometry of IUI_U, with potential observational consequences for the dark universe.Comment: This manuscript has been accepted for publication in Contemporary Physics and is based on the author's 9th Dennis Sciama Lecture, given in Oxford and Triest

    Complex aspects of gravity

    Full text link
    This paper presents reflections on the validity of a series of mathematical methods and technical assumptions that are encrusted in macrophysics (related to gravitational interaction), that seem to have little or no physical significance. It is interesting to inquire what a change can occur if one removes some of the traditional assumptions.Comment: 10 page

    The statistical origins of quantum mechanics

    Get PDF
    It is shown that Schroedinger's equation may be derived from three postulates. The first is a kind of statistical metamorphosis of classical mechanics, a set of two relations which are obtained from the canonical equations of particle mechanics by replacing all observables by statistical averages. The second is a local conservation law of probability with a probability current which takes the form of a gradient. The third is a principle of maximal disorder as realized by the requirement of minimal Fisher information. The rule for calculating expectation values is obtained from a fourth postulate, the requirement of energy conservation in the mean. The fact that all these basic relations of quantum theory may be derived from premises which are statistical in character is interpreted as a strong argument in favor of the statistical interpretation of quantum mechanics. The structures of quantum theory and classical statistical theories are compared and some fundamental differences are identified.Comment: slightly modified version, 24 pages, no figure

    Zeno meets modern science

    Get PDF
    ``No one has ever touched Zeno without refuting him''. We will not refute Zeno in this paper. Instead we review some unexpected encounters of Zeno with modern science. The paper begins with a brief biography of Zeno of Elea followed by his famous paradoxes of motion. Reflections on continuity of space and time lead us to Banach and Tarski and to their celebrated paradox, which is in fact not a paradox at all but a strict mathematical theorem, although very counterintuitive. Quantum mechanics brings another flavour in Zeno paradoxes. Quantum Zeno and anti-Zeno effects are really paradoxical but now experimental facts. Then we discuss supertasks and bifurcated supertasks. The concept of localization leads us to Newton and Wigner and to interesting phenomenon of quantum revivals. At last we note that the paradoxical idea of timeless universe, defended by Zeno and Parmenides at ancient times, is still alive in quantum gravity. The list of references that follows is necessarily incomplete but we hope it will assist interested reader to fill in details.Comment: 40 pages, LaTeX, 10 figure

    Quantum Theory and Determinism

    Get PDF
    Historically, appearance of the quantum theory led to a prevailing view that Nature is indeterministic. The arguments for the indeterminism and proposals for indeterministic and deterministic approaches are reviewed. These include collapse theories, Bohmian Mechanics and the many-worlds interpretation. It is argued that ontic interpretations of the quantum wave function provide simpler and clearer physical explanation and that the many-worlds interpretation is the most attractive since it provides a deterministic and local theory for our physical Universe explaining the illusion of randomness and nonlocality in the world we experience.Comment: Some references updated. Published online in Quantum Studies: Mathematics and Foundation
    • …
    corecore